Добавил:
Я и кто? Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФОЭ, учебное пособие 2016.doc
Скачиваний:
37
Добавлен:
02.02.2023
Размер:
1.27 Mб
Скачать

ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Ордена Трудового Красного Знамени федеральное государственное бюджетное образовательное учреждение высшего образования

Московский технический университет связи и информатики

Власов В.П., Каравашкина В.Н.

УЧЕБНОЕ ПОСОБИЕ

ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОНИКИ

Москва 2016

УДК 621.38

План УМД на 2015/2016 уч. г.

В.П. Власов, В.Н. Каравашкина. Учебное пособие: Физические основы электроники / МТУСИ. – М., 2016. 68 с.

Данное учебное пособие содержит общие сведения об электрических свойствах веществ и контактов различных материалов, используемых в электронике, описание принципов работы и характеристик структур на их основе, а также основные принципы моделирования электронных элементов.

Настоящее пособие полезно для подготовки бакалавров всех технических специальностей, проходящих обучение в МТУСИ.

Ил. 59, список лит. 6 назв.

утверждено заседанием кафедры «Электроника»

протокол № 4 от 05.02.2016

утверждено советом факультета РиТ

протокол № 7 от 15.03.2016

Рецензенты: Т.Б. Асеева, к.т.н., доцент (МТУСИ)

В.Н. Нефедов, д.т.н., профессор (НИУ ВШЭ)

CОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ОБЩАЯ ХАРАКТЕРИСТИКА ВЕЩЕСТВ В ЭЛЕКТРОНИКЕ

1.1. Электрические свойства веществ

1.2. Электрические заряды в полупроводниках

1.3. Энергетические диаграммы

1.4. Электропроводность полупроводников

1.5. Токи в полупроводниках

1.6. Особенности примесных полупроводников

1.7. Расчёт концентрации подвижных носителей заряда

2. ОБЩИЕ СВОЙСТВА КОНТАКТОВ ВЕЩЕСТВ В ЭЛЕКТРОНИКЕ

2.1. Контакты и структуры в электронике

2.2. Контактная разность потенциалов

2.3. Собственные токи в контактах

2.4. Электроёмкость контактов

2.5. Электрический и тепловой пробой в контактах.

3. КОНТАКТ МЕТАЛЛ – ПОЛУПРОВОДНИК. ДИОДЫ ШОТКИ

3.1. Основные свойства металло-полупроводниковых контактов

3.2. Диоды Шотки

4. КОНТАКТ ПОЛУПРОВОДНИКОВ Р- И N-ТИПА

4.1. Основные свойства p-n перехода

4.2. Основные числовые характеристики p-n перехода

4.3 Вольт-амперная характеристика p-n перехода

5. ДИОДЫ НА ОСНОВЕ M-N, P-N ПЕРЕХОДОВ И P-I-N СТРУКТУРЫ

5.1. Мощный выпрямительный диод

5.2. Импульсные и высокочастотные диоды

5.3. Стабилитрон

5.4. Варикап

5.5. Диоды на основе p-i-n структуры

5.6. Свето- и фото-диоды. Солнечные батареи

6. СТРУКТУРА МЕТАЛЛ-ДИЭЛЕКТРИК-ПОЛУПРОВОДНИК.

МДП-ТРАНЗИСТОР

6.1. Основные свойства МДП-структуры

6.2 МДП-транзистор с индуцированным каналом

6.3. Основные параметры МДП-транзистора

6.4. Статические характеристики МДП-транзистора

6.5. МДП-транзистор с плавающим затвором

6.6. Арсенид-галлиевый полевой транзистор

7. N-P-N И P-N-P СТРУКТУРЫ. БИПОЛЯРНЫЙ ТРАНЗИСТОР

7.1. Основные свойства биполярного транзистора

7.2. Биполярный транзистор в схеме с общей базой

7.3. Биполярный транзистор в схеме с общим эмиттером

7.4. Статические характеристики биполярного транзистора

8. ИНЕРЦИОННЫЕ СВОЙСТВА МДП И БИПОЛЯРНЫХ ТРАНЗИСТОРОВ

8.1. Причины инерционности МДП и биполярных транзисторов

8.2. Импульсные свойства МДП и биполярных транзисторов

8.3. Частотные свойства МДП и биполярных транзисторов

9. IGBT – ТРАНЗИСТОР

10. КОНТАКТ ПРОВОДНИК - ВАКУУМ. ЭЛЕКТРОННЫЕ ЛАМПЫ

11. КОМПЬЮТЕРНЫЕ МОДЕЛИ ЭЛЕКТРОННЫХ ЭЛЕМЕНТОВ

11.1. Компьютерная модель диода

11.2. Компьютерная модель транзистора

12. ШУМЫ ЭЛЕКТРОННЫХ ПРИБОРОВ 13. СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Настоящее пособие призвано восполнить острую нехватку учебной литературы по дисциплине «Физические основы электроники», связанную с внешними факторами. Например, переход к бакалавриату, чрезвычайно быстрые и радикальные изменения в электронике (переход к новой элементной базе, новым методам разработки, изготовления и эксплуатации аппаратуры). Теперь главной задачей ВУЗа является подготовка бакалавров с широкой гибкой общей эрудицией. Потребность в разработчиках с узкой специализацией хотя и актуально, но единична и требует намного более высокого уровня школьной, вузовской и послевузовской подготовки.

Немногочисленные общедоступные издания, которые можно рекомендовать для изучения отдельных вопросов курса ФОЭ, крайне неудобны в целом и отличаются плохим соответствием современности и задачам курса. Так, в [1] и [2] большое внимание уделяется p-n переходу и диодам на его основе, в том числе исчезнувшим из электроники германиевым, туннельным, обращенным диодам. Достаточно изучить каталог любого крупного производителя полупроводниковых элементов, чтобы понять, что основными на сегодня являются диоды с m-n, гетеро- и p-i-n структурами. последним в данных изданиях в лучшем случае уделены только отдельные страницы. Неактуально также к тиристорным и преувеличено к биполярным структурам внимание, тогда как основной сегодня является МДП-структура и ее многочисленные варианты. Стремительно распространяющиеся IGBT приборы, как правило, даже не упоминаются. Большим недостатком неспециальной литературы является также невнимание к крайне важному факту – главным средством описания и изучения свойств современных электронных элементов, а также главным инструментом разработки, изготовления и эксплуатации изделий электроники стало компьютерное моделирование.

В условиях крайне ограниченных объёмов лекционного курса и данного пособия авторы сочли нужным избежать излишней детализации и сосредоточиться на главном – концепциях, принципах, проблемах, методах в физических основах современной электроники.

1. Общая характеристика веществ в электронике

1.1 Электрические свойства веществ. Полупроводники

Проводники содержат большое количество носителей заряда, способных перемещаться под действием электрического поля. Такие заряды называют подвижными, их направленное движение – электрическим током. Сила тока i определяется скоростью перемещения суммарного заряда подвижных носителей Q: i = dQ/dt. Способность вещества пропускать ток называется электропроводностью. Электропроводность определяется, главным образом, плотностью концентрации, или просто концентрацией подвижных носителей – их количеством в единице объёма. Типичными проводниками являются металлы. Для них характерна высокая концентрация подвижных зарядов – свободных электронов.

Диэлектрики практически не содержат подвижные заряды, их электропроводность ничтожна. Такими свойствами обладает большое число веществ.

Полупроводники занимают промежуточное положение по электропроводности межу проводниками и диэлектриками. Типичным и самым распространённым в электронике полупроводником является кремний (Si). Широкое применение находят также некоторые соединения, например арсенид галлия (GaAs), нитрид галлия (GaN).

Чистые, или собственные полупроводники содержат атомы только одного вида. Если в полупроводник при изготовлении намеренно введены примеси определённого вида в необходимой концентрации, то это примесный полупроводник. Полупроводники, как правило, используются в кристаллическом виде. В кристаллах атомы располагаются на строго определённых расстояниях друг от друга, в строго определённом взаимном расположении. Это гарантирует предсказуемость и повторяемость электрофизических свойств полупроводника, их однородность и, следовательно, независимость от источника сырья, места, времени и условий изготовления.

Кристаллическая решётка кремния условно изображена на рис. 1. Кружки здесь – атомы кремния, двойные линии между кружками – связи между атомами. Такие связи возникают благодаря валентности – способности атомов образовывать связи друг с другом и удерживаться на определённом расстоянии друг от друга. Валентные связи (в данном кристалле ковалентные связи – их частный случай) обеспечиваются парами валентных электронов – электронов внешней, валентной орбиты (оболочки), по одному от каждого из связанных атомов. Именно внешними оболочками «соприкасаются» атомы при сближении и именно валентные электроны образуют связи с соседними атомами. Согласно рис. 1 каждый атом кристаллического кремния обладает четырьмя валентными электронами и связан с четырьмя соседними атомами, т.е. валентность кремния равна 4.

Рис. 1

На рис.1 кристаллическая решётка изображена в идеальном состоянии.

Однако в реальности полупроводник не может быть абсолютно чистым и бездефектным. От посторонних примесей и дефектов тщательно избавляются при изготовлении кристаллов для электронных элементов.

    1. Электрические заряды в полупроводниках

Идеальное состояние решётки невозможно также при любой температуре, превышающей абсолютный нуль. При этом атомы и электроны хаотично колеблются относительно своих исходных положений, т.е. обладают некоторой тепловой энергией. Амплитуда и направление колебаний случайны и, вследствие обмена энергией между соседними атомов, энергия хаотических тепловых колебаний электронов в некоторые моменты времени оказывается достаточной, чтобы они преодолели притяжение ядра и покинули атом. Такие электроны называются свободными или электронами проводимости, т.к. способны направленно двигаться под действием электрического поля. Свободными становятся, прежде всего, валентные электроны, наиболее удалённые от ядра и наименее с ним связанные.

На месте валентного электрона, ставшего свободным, образуется так называемая дырка – микрообласть с зарядом +q *, в которой отсутствует валентный электрон. Заряд появляется здесь вследствие нарушения равенства суммарного заряда электронов атома и заряда его ядра. Процесс образования свободного электрона и дырки, или электронно-дырочной пары, называется генерацией, рис. 2а. Если генерация обусловлена тепловыми движениями атомов, то это термогенерация. Генерация может вызываться и получением кристаллом других видов энергии, например, световой при освещении полупроводника.

Рис. 2

Одновременно с генерацией происходит обратный процесс – рекомбинация. При этом перемещающийся по полупроводнику свободный электрон попадает в область дырки, восстанавливает ковалентную связь и вновь становится валентным. Восстанавливается валентная связь и электрическая нейтральность данной микрообласти, свободный электрон и дырка исчезают, рис. 2б. В собственном полупроводнике генерация и рекомбинация свободных электронов и дырок происходит только парами, поэтому собственная концентрация свободных электронов ni и собственная концентрация дырок pi равны. Генерация происходит за счёт поглощения внешней энергии. Рекомбинация сопровождается её выделением, так как свободный электрон, превращаясь в валентный, теряет часть своей энергии. В частности, при рекомбинации полупроводник может светиться, что используется в светодиодах.

Дырка, как и свободный электрон, считается подвижным носителем заряда. При перемещении дырка заполняется не свободным, а соседним валентным электроном. Валентный электрон при этом остаётся валентным, его энергия не изменяется. Дырка исчезает на прежнем месте и возникает на новом месте, т.е. перемещается. Хотя при этом фактически перемещаются валентные электроны, воспринимается это, как перемещение единичного положительного заряда. Таким образом, перемещение зарядов в полупроводнике, т.е. возникновение тока, вызывается независимым друг от друга движением свободных электронов и дырок. Поэтому ток в полупроводниках может иметь как электронную In, так и дырочную Ip составляющие. Движение дырки поясняет рис. 3.

* q – элементарный, или единичный электрический заряд, равный 1,6*10-19 Кл. Заряд электрона равен –q, дырки +q.

Рис. 3

Наряду с подвижными зарядами важную роль имеют неподвижные заряды – ионизированные атомы веществ, чаще всего примесей. Ионами называют атомы, утратившие часть своих электронов (положительные ионы) или захватившие посторонние электроны (отрицательные ионы). Ионы в твёрдых веществах не способны перемещаться и создавать ток. Однако, как и любые другие электрические заряды, они способны создавать электрическое поле, влияющее на подвижные заряды.