
- •1. Краткая история генетики и роль отечественных и зарубежных ученых в формировании науки, ее социальные аспекты.
- •2.Оценка генофонда пород, линий, семейств и потомков производителей по устойчивости к заболеваниям.
- •3. Генетика – наука будущего. Методы в генетике, связь с другими науками.
- •5. Биометрия, как один из методов математической обработки биологических величин. Изменчивость и ее виды.
- •6. Ветеринарная фармакогенетика. Генетическая резистентность к лекарствам.
- •7.Строение клетки ядра, функции органоидов плазмы.
- •9.Строение и синтез днк
- •10. Механизмы взаимодействия хозяин-паразит. Генетическая устойчивость к заболеваниям желудочно-кишечного тракта (диарея, тимпания) органов дыхания (пневмония, плеврит, ренит).
- •11.Рибонуклеиновая кислота, её строение и виды
- •12.Генетическая устойчивость и восприимчивость к бактериальным, протозойным заболеваниям и гельминтозам, вирусным инфекциям, лейкозу, клещам.
- •13 Доказательство роли днк в наследственности.
- •14. Генетическая устойчивость и восприимчивость к заболеваниям у животных, их наследование.
- •15. Методы изучения (генеалогический, близнецовый, селекционный).
- •16.Митоз и стадии деления
- •1 7.Аберрации хромосом у с.Х. Животных и их связь с нарушениями эмбрионального развития. Профилактика распространения аберраций у с.Х.Животных.
- •19.Этиология врожденных аномалий, определение типа наследственных аномалий. Числовые и структурные мутации кариотипа и фенотипические аномалии с.Х животных
- •20. Синтез белков в клетке.
- •21.Тератология-учение об уродствах и аномалиях. Их номенклатура у с.Х. Животных.
- •22/24. Строение и действие гена.
- •23/25.Иммуноглобулины, изотипы, идиотипы. Факторы, обеспечивающие разнообразие антител.
- •26.Общие вопросы менделизма, сущность и методы гибридологического анализа.
- •27.Понятие об иммунитете и иммунной системе организма. Специфический и неспецифический иммунитет.
- •28.Моногибридное скрещивание. Закон единообразия и расщепления. Факторы, влияющие на расщепление.
- •29.Клонирование и получение трансгенных животных.
- •30.Дигибридное и полигибридное скрещивание. Закон частоты гамет.
- •31. Эмбриогенетическая инженерия трансплантация эмбрионов, ее значение в селекции стад и повышение устойчивости к болезням.
- •32.Комплементарное взаимодействие генов.
- •33. Получение рекомбинантной днк. Векторы молекулярного клонирования.
- •34. Новообразование и его сущность.
- •35. Понятие о биотехнологии, генная и генетическая инженерия.
- •36. Генетика поведения животных
- •37. Коньюгация, трансдукция, трансформация у бактерий
- •38. Эпистатическое взаимодействие генов и полимерия.
- •39. Плазмиды и их роль в деятельности бактерий. Строение и функции вирусного генома.
- •41. Жизнь и деятельность бактериофага.
- •42. Кроссинговер, как причина неполного сцепления, его сущность.
- •43. Генетико-биологический полиморфизм белков.
- •44. Способы доказательства кроссинговера.
- •45. Методы определения групп крови. Получение реагентов для определения групп крови.
- •1) Определение группы крови цоликлонами анти-а, анти-в.
- •2) Определение групп крови стандартными сыворотками.
- •46. Первичные и вторичные половые признаки.
- •47. Краткая история иммуногенетики и наследование групп крови у человека и животных.
- •48.Генетика пола, хромосомное определение пола живых организмов и балансовая теория определения пола.
- •49/59.Пути управления онтогенезом и его регуляция для получения желательной модификационной изменчивости.
- •50. Наследование признаков сцепленных с полом, признаки, ограниченные полом.
- •51. Возрастная изменчивость состава белков и критические периоды развития организма.
- •52. Проблема направленного регулирования полов.
- •53. Роль генетической информации в начальных стадиях эмбриогенеза.
- •54. Особенности мутагенеза и классификация мутаций.
- •55. Влияние генов и среды на развитие признаков
- •56. Полиплоидия и гетероплоидия, их особенности причины возникновения.
- •57. Понятие о гетерозисе и инбредной депрессии. Причина их возникновения.
- •5 8.Хромосомные перестройки и их виды
- •61.Точковые прямые и обратные мутации причины их возникновения.
- •62.Влияние среды на интенсивность отбора и отбора на сохранение ценных наследственных сочетаний, понятие о генофонде.
- •63. Влияние ионизирующего и радиационного излучения на мутационный процесс.
- •64. Влияние отбора и различного скрещивания на изменение структуры популяций.
- •65. Химические мутагенные факторы.
- •66. Понятие о панмиктической популяции и её основные свойства. Закон Харди-Вайнберга.
- •67.Процесс возникновения мутаций.
- •68. Различие в эффективности отбора в чистых линиях и популяции (работы Иогансена).
48.Генетика пола, хромосомное определение пола живых организмов и балансовая теория определения пола.
Большинство животных являются раздельнополыми организмами. Пол можно рассматривать как совокупность признаков и структур, обеспечивающих способ воспроизводства потомства и передачу наследственной информации. Пол чаще всего определяется в момент оплодотворения, то есть в определении пола главную роль играет кариотип зиготы.
Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов, — аутосомы, и хромосомы, по которым женский и мужской пол отличаются друг от друга, — половые хромосомы.
У человека «женскими» половыми хромосомами являются две Х-хромосомы. При образовании гамет каждая яйцеклетка получает одну из Х-хромосом. Пол, у которого образуются гаметы одного типа, несущие Х-хромосому, называется гомогаметным. У человека женский пол является гомогаметным.
«Мужские» половые хромосомы у человека — Х-хромосома и Y-хромосома. При образовании гамет половина сперматозоидов получает Х-хромосому, другая половина — Y-хромосому. Пол, у которого образуются гаметы разного типа, называется гетерогаметным. У человека мужской пол — гетерогаметный.
У животных можно выделить следующие четыре типа хромосомного определения пола.
Женский пол — гомогаметен (ХХ), мужской — гетерогаметен (ХY) (млекопитающие).
Женский пол — гомогаметен (ХХ), мужской — гетерогаметен (Х0) (прямокрылые).
Женский пол — гетерогаметен (ХY), мужской — гомогаметен (ХХ) (птицы, пресмыкающиеся).
Женский пол — гетерогаметен (Х0), мужской — гомогаметен (ХХ) (некоторые виды насекомых).
Балансовая теория определения пола.
К. Бриджес в 1925 г., изучая уникальные линии дрозофилы с разным числом наборов аутосом (А) и разным количеством Х – хромосом, выдвинул предположение о том, что у дрозофилы женский пол определяется не присутствием двух Х – хромосом, а мужской – наличием хромосом Х и Y, а соотношением числа половых хромосом и наборов аутосом.
Гены женской тенденции сосредоточены главным образом в Х - хромосомах, гены мужской – в аутосомах. Это видно из того, что все особи с балансом хромосом (или половым индексом) Х : А=1 представляют собой самок; отношение Х : 2А=0,5 дает самцов.
Балансовая теория определения пола сейчас является общепринятой. Она показывает генетически обусловленную потенциальную бисексуальность всех раздельнополых организмов и их гамет. При этом механизмы, поддерживающие баланс генов, могут быть разными.
Определение
пола у дрозофилы согласно балансовой
теории:
49/59.Пути управления онтогенезом и его регуляция для получения желательной модификационной изменчивости.
Онтогенез — индивидуальное развитие организма.
Существует несколько способов управления онтогенезом в эмбриональный период:
Целенаправленный подбор родительских пар дает возможность получения специализированных животных.
Воздействие на генотип с целью получения полезных мутаций. Для этого применяются рентгеновские лучи или специальные химические вещества — супермутагенты.
Генная инженерия, т.е. перенос нужных генов из одного организма в другой. В настоящее время разработаны методы клонирования (копирования) нужных генов и встраивания их в новые организмы.
Использование особенностей материнского организма для получения желательного потомства. Считается, что оба родителя в равной степени передают потомству свои качества, это верно только для больших популяций, а в отдельных случаях всегда влияет больше один из родителей. Например, если мать пони, а отец — тяжеловоз, то получается мелкое потомство, и наоборот, если мать тяжеловозной породы, а отец пони, то будет крупное потомство.
Управление онтогенезом в постэмбриональный период заключается в направленном выращивании.
Направленное выращивание — это система воздействия различных факторов на индивидуальное развитие животного, применяемая в определенные периоды жизни с целью формирования у него желательных признаков и свойств, заложенных в генотипе.
Основная задача направленного выращивания заключается в создании животных специализированного типа, способных проявлять высокую продуктивность, плодовитость и резистентность в течение многих лет в условиях промышленной технологии.
Модификационная (фенотипическая) изменчивость — изменения в организме, связанные с изменением фенотипа вследствие влияния окружающей среды и носящие, в большинстве случаев, адаптивный характер. Генотип при этом не изменяется.
Возникновение модификаций связано с тем, что такие важнейшие факторы среды, как свет, тепло, влага, химический состав и структура почвы, воздух, воздействуют на активность ферментов и в известной мере изменяют ход биохимических реакций, протекающих в развивающемся организме.
Высокая температура задерживает рост на ранних стадиях онтогенеза, а ритмичное, но без резких переходов изменение температуры положительно влияет на рост и развитие.
Повышенная влажность при пониженной температуре — основная причина заболеваний, которые вызывают отставание в росте. Такое же действие оказывает повышенное содержание в воздухе вредных газов.
Отсутствие света угнетает рост, повышает жироотложение. В птицеводстве удлиненный световой день позволяет повысить яйценоскость и сократить сроки наступления полового созревания.