
- •Часть 1 содержит лекции по темам: «Механика», «Электростатика и постоянный ток», «Магнитное поле и электромагнитная индукция».
- •Лекция 1
- •1. Кинематика поступательного движения
- •Механическое движение
- •1.2. Основные понятия и определения
- •Эти уравнения движения эквивалентны векторному уравнению
- •1.3. Скорость
- •1.4. Ускорение
- •Лекция 2
- •2. Кинематика вращательного движения
- •2.1. Вращательное движение
- •2.2. Угловой путь. Угловая скорость. Угловое ускорение
- •2.3. Соотношение между угловыми и линейными величинами
- •Нормальное ускорение равно
- •Как нормальное, так и касательное ускорение растет линейно с увеличением расстояния r от точки до оси вращения.
- •Лекция 3
- •3. Динамика поступательного движения
- •3.1. Сила. Первый закон ньютона
- •Виды сил
- •Первый закон Ньютона
- •3.2. Второй закон ньютона. Масса. Импульс
- •2Ой закон Ньютона. Ускорение, приобретаемое телом, совпадает по направлению с действующей на него силой и равно отношению этой силы к массе тела
- •Выражение (3.2.3) можно записать в виде:
- •3.3. Третий закон ньютона
- •Третий закон
- •3.4. Закон сохранения импульса
- •Лекция 4
- •4. Динамика вращательного движения
- •4.1. Момент инерции относительно оси вращения
- •4.2. Момент силы относительно оси вращения
- •4.3. Момент импульса. Основное уравнение динамики вращательного движения
- •4.4. Закон сохранения момента импульса
- •Лекция 5
- •5. Энергия. Работа. Мощность
- •5.1. Способы вычисления работы
- •5.2. Мощность
- •5.3. Кинетическая энергия
- •5.4. Потенциальная энергия
- •Следовательно для тела, находящегося в поле тяготения Земли
- •По третьему закону Ньютона для преодоления силы упругости надо приложить силу
- •5.5. Закон сохранения энергии
- •6.2. Постулаты специальной теории относительности
- •Кто понимает теорию относительности?
- •Был этот мир глубокой тьмой окутан.
- •6.3. Преобразования лоренца
- •Аналогично можно получить
- •6.4 Закон сложения скоростей
- •Разделив уравнение (6.4.1) на (6.4.2) получим
- •Лекция 7
- •7. Следствия из преобразований лоренца
- •7.1. Длина тела в различных исо
- •7.2. Длительность событий в различных исо
- •Воспользуемся формулами преобразования времени
- •Интервал между событиями
- •7.3. Основной закон релятивистской динамики материальной точки
- •7.4. Взаимосвязь массы и энергии
- •Для изменения кинетической энергии необходимо совершить работу
- •7.5. Значение теории относительности
- •Лекция 8 Электрическое поле
- •8.1. Электрический заряд
- •Линейная плотность электрических зарядов.
- •8.2. Закон Кулона
- •8.2.1. Закон Кулона для точечных зарядов
- •8.2.2. Закон Кулона для заряженных тел
- •8.3. Электрическое поле
- •8.3.1. Понятие электрического поля
- •8.3.2. Напряженность электрического поля
- •8.3.3. Графическое представление электрического поля
- •9.2. Поток вектора электрического смещения (индукции)
- •9.3. Теорема Остроградского-Гаусса
- •9.4. Применение теоремы Остроградского–Гаусса
- •9.4.1. Поле равномерно заряженной сферы
- •9.4.2. Поле равномерно заряженного шара
- •9.4.3. Поле бесконечного равномерно заряженного цилиндра
- •9.4.4. Поле бесконечной равномерно заряженной плоскости
- •Лекция 10 потенциал электростатического поля
- •10.1. Работа сил электростатического поля
- •10.2. Электрический потенциал. Разность потенциалов
- •1 КэВ (килоэлектронвольт) - 103 эВ;
- •1 МэВ (мегаэлектронвольт) - 106 эВ;
- •10.3. Связь между напряженностью электрического поля и потенциалом
- •10.4. Эквипотенциальные поверхности
- •Лекция 11 проводники в электрическом поле
- •11.1. Распределение зарядов в проводнике
- •11.2. Электрическая емкость уединенного проводника
- •11.3. Конденсаторы
- •11.3.1. Плоский конденсатор
- •11.3.2. Цилиндрический конденсатор
- •11.3.3. Сферический конденсатор
- •11.3.4. Соединения конденсаторов
- •11.4. Энергия заряженного проводника
- •11.5. Энергия заряженного конденсатора
- •11.6. Энергия электрического поля
- •Лекция 12 понятие об элекрическом токе
- •12.1. Понятие об электрическом токе
- •12.2. Сила и плотность тока
- •12.3. Закон ома в дифференциальном виде
- •12.4. Электродвижущая сила
- •12.5. Закон ома в интегральной форме
- •12.6. Зависимость электропроводности от температуры
- •12.7. Закон джоуля – ленца в дифференциальной форме
- •12.8. Работа и мощность электрического тока
- •Лекция 13 законы кирхгофа
- •Лекция 14 диэлектрики в электрическом поле
- •14.1. Дипольные моменты молекул диэлектрика
- •14.2. Поляризация диэлектриков
- •14.3. Электрическое поле диэлектрика
- •14.4. Сегнетоэлектрики
- •15.2. Закон Ампера
- •15.3. Закон Био-Савара-Лапласа
- •15.4. Магнитный поток
- •15.5. Магнитный момент контура с током
- •15.6. Теорема Гаусса для магнитного поля
- •Лекция 16 принцип суперпозиции и его применение
- •16.1. Принцип суперпозиции
- •16.2. Магнитное поле прямолинейного проводника с током
- •16.3. Магнитное поле кругового тока
- •16.4. Магнитное поле в центре прямоугольной рамки
- •1 М 6.5. Закон полного тока
- •16.6. Магнитное поле соленоида (катушки)
- •16.7. Магнитное поле тороида
- •Лекция 17 действие магнитного поля на электрический ток
- •17.1. Взаимодействие параллельных токов
- •17.2. Вращение рамки с током в магнитном поле
- •17.3. Работа магнитного поля по перемещению проводника с током
- •17.4. Работа магнитного поля по перемещению контура с током
- •Лекция 18 действие магнитного поля на движущийся заряд
- •18.1. Сила Лоренца
- •18.2. Движение заряженной частицы в магнитном поле
- •18.3. Масс-спектрометр
- •18.4. Эффект Холла
- •18.5. Ускорители
- •Лекция 19 явление электромагнитной индукции
- •19.1. Опыты Фарадея
- •19.2. Основной закон электромагнитной индукции
- •19.3. Эдс индукции при вращении рамки в магнитном поле
- •19.4. Эдс индукции в движущемся проводнике
- •19.5. Развернутая формула основного закона электромагнитной индукции
- •Лекция 20 явление самоиндукции
- •20.1. Индуктивность контура
- •20.2. Самоиндукция
- •20.3. Индуктивность катушки
- •20.4. Токи при замыкании и размыкании цепи
- •20.5. Энергия магнитного поля
- •Лекция 21
- •21.1. Взаимная индукция
- •21.2. Взаимная индуктивность двух катушек
- •21.3. Трансформатор
- •21.4. Вихревые токи
- •21.5. Скин-эффект
- •Лекция 22 магнитные свойства твердых тел
- •22.1. Магнитные моменты электрона и атома
- •22.2. Диамагнетики
- •22.3. Парамагнетики
- •22.4. Ферромагнетики
- •Свойства ферромагнетиков
- •Лекция 23 ток смещения
- •Лекция 24 основы теории максвелла электромагнитного поля
- •24.1. Первое уравнение Максвелла
- •24.2. Второе уравнение Максвелла
- •24.3. Третье и четвертое уравнения Максвелла
- •24.4. Первое и второе уравнения Максвелла в дифференциальной форме
- •24.5. Третье и четвертое уравнения Максвелла в дифференциальной форме
- •Литература
- •Оглавление
20.4. Токи при замыкании и размыкании цепи
1
.
Рассмотрим электрическую цепь (рис.
20.4.1), состоящую из двух параллельных
ветвей, в одну из которых подключена
катушка индуктивности L,
а во вторую ветвь проводник сопротивлением
R. В каждую
ветвь цепи подключена лампочка. ЭДС
источника тока обозначена Е.
При замыкании
ключа К лампа Л2 загорается после лампы
Л1. В катушке с ростом силы тока в цепи
от 0 появляется ток самоиндукции
,
направленный противоположно току
I.
Поэтому сила тока в катушке позже
достигает максимального значения.
Выведем формулу изменения силы тока.
По второму закону Кирхгофа для замкнутого
контура можно записать
.
Подставляя ЭДС индукции
получаем
,
.
Умножив и разделив правую часть соотношения на величину сопротивления , получаем
.
Проводя преобразования, учли, что ЭДС источника тока можно считать постоянной величиной, поэтому ее дифференциал равен нулю
.
Проведем разделение переменных и проинтегрируем обе части уравнения
.
Неопределенный интеграл определяется с точностью до постоянной С, поэтому можно записать
или
.
(20.4.1)
В начальный момент времени t = 0 и тока нет = 0. Подставим эти значения в формулу (20.4.1), получим
.
(20.4.2)
Учитывая (20.4.2), можно записать
.
Найдем силу тока
(20.4.3)
Из соотношения (20.4.3) следует, что сила тока в цепи постепенно увеличивается от 0 до максимального значения, которое равно
.
Подставляя в формулу (20.4.3) значения силы тока I = 0 в начальный момент времени t= 0, получаем
П
ри
увеличении времени
сила тока достигает значения
.
График возрастания
силы тока со временем представлен на
(рис. 20.4.2). Чем больше индуктивность
катушки (
),
тем позже сила тока принимает максимальное
значение.
2
.
Рассмотрим электрическую цепь, содержащую
последовательно соединенные лампу Л и
катушку большой индуктивности L (рис.
20.4.3). В цепи первоначально идет ток силой
тока I.
При размыкании ключа сила тока в цепи
уменьшается. В катушке возникает ток
самоиндукции
,
сонаправленный с током I,
поэтому сила тока в цепи уменьшается
до нуля не сразу, а постепенно. При
большой индуктивности катушки L сила
тока самоиндукции может стать больше
чем I,
тогда лампа Л вспыхивает, а затем гаснет.
Выведем формулу изменения силы тока в
цепи. Запишем второй закон Кирхгофа
(20.4.4)
При размыкании
ключа
.
Подставим ЭДС самоиндукции , в формулу (20.4.4)
.
Проведем разделение переменных I и t
.
Проинтегрируем полученное выражение
.
Учтем, что неопределенный интеграл определен с точность до постоянной С
.
Найдем силу тока
.
Постоянную С
определим из начальных условий: при
значение
;
.
Подставляя постоянную, получаем формулу изменения силы тока при размыкании цепи
(20.4.5)
Из выражения
(20.4.5) следует, что при
размыкании цепи cила
тока уменьшается со временем по
экспоненциальному закону:
при
,
.
Чем больше индуктивность катушки
,
тем позже сила тока в цепи уменьшается
до нуля (рис. 20.4.4).
В
ремя
релаксации
– это время, за которое сила тока в цепи
уменьшается в e = 2,71 раз. Подставим данное
условие в формулу (20.4.3) и, преобразуя,
получим
. (20.4.4)
С другой стороны по определению времени релаксации
.
.
(20.4.5)
Сравнивая формулы (20.4.4) и (20.4.5), получаем
;
.
Время релаксации
зависит от параметров цепи: индуктивности
катушки и сопротивления. На практике
сила тока в цепи уменьшается до нуля за
время равное
.
В промышленности
при больших индуктивностях катушек ток
самоиндукции
может стать очень большим, что приведет
к пробою изоляции и аварии. Поэтому силу
тока в цепи уменьшают постепенно,
увеличивая сопротивление с помощью
реостатов.
Оба рассмотренных случая размыкания и замыкания цепи показывают: чем больше индуктивность (L), тем позже ток достигает максимального или минимального значений. Этим свойством индуктивность похожа на массу в механике. Индуктивность является мерой инертности в электромагнитных явлениях.