
- •Часть 1 содержит лекции по темам: «Механика», «Электростатика и постоянный ток», «Магнитное поле и электромагнитная индукция».
- •Лекция 1
- •1. Кинематика поступательного движения
- •Механическое движение
- •1.2. Основные понятия и определения
- •Эти уравнения движения эквивалентны векторному уравнению
- •1.3. Скорость
- •1.4. Ускорение
- •Лекция 2
- •2. Кинематика вращательного движения
- •2.1. Вращательное движение
- •2.2. Угловой путь. Угловая скорость. Угловое ускорение
- •2.3. Соотношение между угловыми и линейными величинами
- •Нормальное ускорение равно
- •Как нормальное, так и касательное ускорение растет линейно с увеличением расстояния r от точки до оси вращения.
- •Лекция 3
- •3. Динамика поступательного движения
- •3.1. Сила. Первый закон ньютона
- •Виды сил
- •Первый закон Ньютона
- •3.2. Второй закон ньютона. Масса. Импульс
- •2Ой закон Ньютона. Ускорение, приобретаемое телом, совпадает по направлению с действующей на него силой и равно отношению этой силы к массе тела
- •Выражение (3.2.3) можно записать в виде:
- •3.3. Третий закон ньютона
- •Третий закон
- •3.4. Закон сохранения импульса
- •Лекция 4
- •4. Динамика вращательного движения
- •4.1. Момент инерции относительно оси вращения
- •4.2. Момент силы относительно оси вращения
- •4.3. Момент импульса. Основное уравнение динамики вращательного движения
- •4.4. Закон сохранения момента импульса
- •Лекция 5
- •5. Энергия. Работа. Мощность
- •5.1. Способы вычисления работы
- •5.2. Мощность
- •5.3. Кинетическая энергия
- •5.4. Потенциальная энергия
- •Следовательно для тела, находящегося в поле тяготения Земли
- •По третьему закону Ньютона для преодоления силы упругости надо приложить силу
- •5.5. Закон сохранения энергии
- •6.2. Постулаты специальной теории относительности
- •Кто понимает теорию относительности?
- •Был этот мир глубокой тьмой окутан.
- •6.3. Преобразования лоренца
- •Аналогично можно получить
- •6.4 Закон сложения скоростей
- •Разделив уравнение (6.4.1) на (6.4.2) получим
- •Лекция 7
- •7. Следствия из преобразований лоренца
- •7.1. Длина тела в различных исо
- •7.2. Длительность событий в различных исо
- •Воспользуемся формулами преобразования времени
- •Интервал между событиями
- •7.3. Основной закон релятивистской динамики материальной точки
- •7.4. Взаимосвязь массы и энергии
- •Для изменения кинетической энергии необходимо совершить работу
- •7.5. Значение теории относительности
- •Лекция 8 Электрическое поле
- •8.1. Электрический заряд
- •Линейная плотность электрических зарядов.
- •8.2. Закон Кулона
- •8.2.1. Закон Кулона для точечных зарядов
- •8.2.2. Закон Кулона для заряженных тел
- •8.3. Электрическое поле
- •8.3.1. Понятие электрического поля
- •8.3.2. Напряженность электрического поля
- •8.3.3. Графическое представление электрического поля
- •9.2. Поток вектора электрического смещения (индукции)
- •9.3. Теорема Остроградского-Гаусса
- •9.4. Применение теоремы Остроградского–Гаусса
- •9.4.1. Поле равномерно заряженной сферы
- •9.4.2. Поле равномерно заряженного шара
- •9.4.3. Поле бесконечного равномерно заряженного цилиндра
- •9.4.4. Поле бесконечной равномерно заряженной плоскости
- •Лекция 10 потенциал электростатического поля
- •10.1. Работа сил электростатического поля
- •10.2. Электрический потенциал. Разность потенциалов
- •1 КэВ (килоэлектронвольт) - 103 эВ;
- •1 МэВ (мегаэлектронвольт) - 106 эВ;
- •10.3. Связь между напряженностью электрического поля и потенциалом
- •10.4. Эквипотенциальные поверхности
- •Лекция 11 проводники в электрическом поле
- •11.1. Распределение зарядов в проводнике
- •11.2. Электрическая емкость уединенного проводника
- •11.3. Конденсаторы
- •11.3.1. Плоский конденсатор
- •11.3.2. Цилиндрический конденсатор
- •11.3.3. Сферический конденсатор
- •11.3.4. Соединения конденсаторов
- •11.4. Энергия заряженного проводника
- •11.5. Энергия заряженного конденсатора
- •11.6. Энергия электрического поля
- •Лекция 12 понятие об элекрическом токе
- •12.1. Понятие об электрическом токе
- •12.2. Сила и плотность тока
- •12.3. Закон ома в дифференциальном виде
- •12.4. Электродвижущая сила
- •12.5. Закон ома в интегральной форме
- •12.6. Зависимость электропроводности от температуры
- •12.7. Закон джоуля – ленца в дифференциальной форме
- •12.8. Работа и мощность электрического тока
- •Лекция 13 законы кирхгофа
- •Лекция 14 диэлектрики в электрическом поле
- •14.1. Дипольные моменты молекул диэлектрика
- •14.2. Поляризация диэлектриков
- •14.3. Электрическое поле диэлектрика
- •14.4. Сегнетоэлектрики
- •15.2. Закон Ампера
- •15.3. Закон Био-Савара-Лапласа
- •15.4. Магнитный поток
- •15.5. Магнитный момент контура с током
- •15.6. Теорема Гаусса для магнитного поля
- •Лекция 16 принцип суперпозиции и его применение
- •16.1. Принцип суперпозиции
- •16.2. Магнитное поле прямолинейного проводника с током
- •16.3. Магнитное поле кругового тока
- •16.4. Магнитное поле в центре прямоугольной рамки
- •1 М 6.5. Закон полного тока
- •16.6. Магнитное поле соленоида (катушки)
- •16.7. Магнитное поле тороида
- •Лекция 17 действие магнитного поля на электрический ток
- •17.1. Взаимодействие параллельных токов
- •17.2. Вращение рамки с током в магнитном поле
- •17.3. Работа магнитного поля по перемещению проводника с током
- •17.4. Работа магнитного поля по перемещению контура с током
- •Лекция 18 действие магнитного поля на движущийся заряд
- •18.1. Сила Лоренца
- •18.2. Движение заряженной частицы в магнитном поле
- •18.3. Масс-спектрометр
- •18.4. Эффект Холла
- •18.5. Ускорители
- •Лекция 19 явление электромагнитной индукции
- •19.1. Опыты Фарадея
- •19.2. Основной закон электромагнитной индукции
- •19.3. Эдс индукции при вращении рамки в магнитном поле
- •19.4. Эдс индукции в движущемся проводнике
- •19.5. Развернутая формула основного закона электромагнитной индукции
- •Лекция 20 явление самоиндукции
- •20.1. Индуктивность контура
- •20.2. Самоиндукция
- •20.3. Индуктивность катушки
- •20.4. Токи при замыкании и размыкании цепи
- •20.5. Энергия магнитного поля
- •Лекция 21
- •21.1. Взаимная индукция
- •21.2. Взаимная индуктивность двух катушек
- •21.3. Трансформатор
- •21.4. Вихревые токи
- •21.5. Скин-эффект
- •Лекция 22 магнитные свойства твердых тел
- •22.1. Магнитные моменты электрона и атома
- •22.2. Диамагнетики
- •22.3. Парамагнетики
- •22.4. Ферромагнетики
- •Свойства ферромагнетиков
- •Лекция 23 ток смещения
- •Лекция 24 основы теории максвелла электромагнитного поля
- •24.1. Первое уравнение Максвелла
- •24.2. Второе уравнение Максвелла
- •24.3. Третье и четвертое уравнения Максвелла
- •24.4. Первое и второе уравнения Максвелла в дифференциальной форме
- •24.5. Третье и четвертое уравнения Максвелла в дифференциальной форме
- •Литература
- •Оглавление
19.4. Эдс индукции в движущемся проводнике
Рассмотрим движение
проводника длиной
со скоростью
в горизонтальной
плоскости (рис. 19.4.1). Индукция
однородного магнитного поля перпендикулярна
плоскости движения. За время
проводник переместится на расстояние
,
тогда элементарная площадь, которую
пересекает проводник за время
,
будет равна
,
(19.4.1)
где - угол между проводником и направлением скорости его движения.
Запишем основной закон электромагнитной индукции
.
Подставив формулу
магнитного потока
и учитывая, что угол
= 0, получаем
.
Подставляя формулу площади (19.4.1) в полученное выражение, можно записать
или
.
(19.4.2)
Запишем обобщенный закон Ома
.
Выразим ЭДС индукции через разность потенциалов на концах проводника. Тока в проводнике нет, т.к. он разомкнут, поэтому = 0, тогда
.
(19.4.3)
Сравнивая формулы ЭДС (19.4.2) и (19.4.3), получаем формулу для разности потенциалов на концах проводника, движущегося в магнитном поле
.
Направление
индукционного тока можно определить
по правилу правой руки (рис. 19.4.2): вектор
магнитной индукция
входит
в ладонь, большой палец направлен по
скорости движения проводника, тогда
четыре пальца правой руки показывают
направление индукционного тока.
19.5. Развернутая формула основного закона электромагнитной индукции
В формулу основного закона электромагнитной индукции
.
подставим выражение магнитного потока
.
Возьмем производную и в результате получим
.
(19.5.1)
Это выражение называется развернутой формулой основного закона электромагнитной индукции. Каждое слагаемое связано с различными проявлениями электромагнитной индукции.
Первое слагаемое связано с появлением индукционного тока при вращении рамки в магнитном поле (см. § 19.3). Второе слагаемое характеризует возникновение ЭДС индукции при движении проводника в магнитном поле (см. § 19.4).
Т
ретье
слагаемое в формуле (19.5.1) связано с
работой трансформатора (рис. 19.5.1).
При изменении силы тока в первичной обмотке (катушке) трансформатора вокруг нее возникает переменное магнитное поле ( ), а площадь витков и угол между нормалью к поверхности и вектором индукции можно считать неизменяющимися.
Такому явлению соответствует третье слагаемое формулы (19.5.1)
.
(19.5.2)
Обычно первичную обмотку трансформатора подключают к сети переменного тока. Магнитное поле, созданное током в первичной обмотке, будет изменяться по гармоническому закону
.
(19.5.3)
Во вторичной обмотке возникает ЭДС индукции. Подставив формулу (19.5.3) в выражение (19.5.2) и взяв производную по времени, получим
.
Если =0, то ЭДС индукции можно записать в виде
,
где
– амплитудное значение ЭДС индукции.
Во вторичной обмотке трансформатора возникает ЭДС индукции и может идти переменный ток.
Еще одно проявление ЭМИ: магнитная индукция внешнего поля не изменяется, но магнитное поле неоднородное. Это явление применяют в работе индукционного взрывателя мин.
Магнитное поле корабля неоднородное и при движении корабля в цепи мины возникает индукционный ток, что приводит к срабатыванию взрывателя и взрыву.