
- •Часть 1 содержит лекции по темам: «Механика», «Электростатика и постоянный ток», «Магнитное поле и электромагнитная индукция».
- •Лекция 1
- •1. Кинематика поступательного движения
- •Механическое движение
- •1.2. Основные понятия и определения
- •Эти уравнения движения эквивалентны векторному уравнению
- •1.3. Скорость
- •1.4. Ускорение
- •Лекция 2
- •2. Кинематика вращательного движения
- •2.1. Вращательное движение
- •2.2. Угловой путь. Угловая скорость. Угловое ускорение
- •2.3. Соотношение между угловыми и линейными величинами
- •Нормальное ускорение равно
- •Как нормальное, так и касательное ускорение растет линейно с увеличением расстояния r от точки до оси вращения.
- •Лекция 3
- •3. Динамика поступательного движения
- •3.1. Сила. Первый закон ньютона
- •Виды сил
- •Первый закон Ньютона
- •3.2. Второй закон ньютона. Масса. Импульс
- •2Ой закон Ньютона. Ускорение, приобретаемое телом, совпадает по направлению с действующей на него силой и равно отношению этой силы к массе тела
- •Выражение (3.2.3) можно записать в виде:
- •3.3. Третий закон ньютона
- •Третий закон
- •3.4. Закон сохранения импульса
- •Лекция 4
- •4. Динамика вращательного движения
- •4.1. Момент инерции относительно оси вращения
- •4.2. Момент силы относительно оси вращения
- •4.3. Момент импульса. Основное уравнение динамики вращательного движения
- •4.4. Закон сохранения момента импульса
- •Лекция 5
- •5. Энергия. Работа. Мощность
- •5.1. Способы вычисления работы
- •5.2. Мощность
- •5.3. Кинетическая энергия
- •5.4. Потенциальная энергия
- •Следовательно для тела, находящегося в поле тяготения Земли
- •По третьему закону Ньютона для преодоления силы упругости надо приложить силу
- •5.5. Закон сохранения энергии
- •6.2. Постулаты специальной теории относительности
- •Кто понимает теорию относительности?
- •Был этот мир глубокой тьмой окутан.
- •6.3. Преобразования лоренца
- •Аналогично можно получить
- •6.4 Закон сложения скоростей
- •Разделив уравнение (6.4.1) на (6.4.2) получим
- •Лекция 7
- •7. Следствия из преобразований лоренца
- •7.1. Длина тела в различных исо
- •7.2. Длительность событий в различных исо
- •Воспользуемся формулами преобразования времени
- •Интервал между событиями
- •7.3. Основной закон релятивистской динамики материальной точки
- •7.4. Взаимосвязь массы и энергии
- •Для изменения кинетической энергии необходимо совершить работу
- •7.5. Значение теории относительности
- •Лекция 8 Электрическое поле
- •8.1. Электрический заряд
- •Линейная плотность электрических зарядов.
- •8.2. Закон Кулона
- •8.2.1. Закон Кулона для точечных зарядов
- •8.2.2. Закон Кулона для заряженных тел
- •8.3. Электрическое поле
- •8.3.1. Понятие электрического поля
- •8.3.2. Напряженность электрического поля
- •8.3.3. Графическое представление электрического поля
- •9.2. Поток вектора электрического смещения (индукции)
- •9.3. Теорема Остроградского-Гаусса
- •9.4. Применение теоремы Остроградского–Гаусса
- •9.4.1. Поле равномерно заряженной сферы
- •9.4.2. Поле равномерно заряженного шара
- •9.4.3. Поле бесконечного равномерно заряженного цилиндра
- •9.4.4. Поле бесконечной равномерно заряженной плоскости
- •Лекция 10 потенциал электростатического поля
- •10.1. Работа сил электростатического поля
- •10.2. Электрический потенциал. Разность потенциалов
- •1 КэВ (килоэлектронвольт) - 103 эВ;
- •1 МэВ (мегаэлектронвольт) - 106 эВ;
- •10.3. Связь между напряженностью электрического поля и потенциалом
- •10.4. Эквипотенциальные поверхности
- •Лекция 11 проводники в электрическом поле
- •11.1. Распределение зарядов в проводнике
- •11.2. Электрическая емкость уединенного проводника
- •11.3. Конденсаторы
- •11.3.1. Плоский конденсатор
- •11.3.2. Цилиндрический конденсатор
- •11.3.3. Сферический конденсатор
- •11.3.4. Соединения конденсаторов
- •11.4. Энергия заряженного проводника
- •11.5. Энергия заряженного конденсатора
- •11.6. Энергия электрического поля
- •Лекция 12 понятие об элекрическом токе
- •12.1. Понятие об электрическом токе
- •12.2. Сила и плотность тока
- •12.3. Закон ома в дифференциальном виде
- •12.4. Электродвижущая сила
- •12.5. Закон ома в интегральной форме
- •12.6. Зависимость электропроводности от температуры
- •12.7. Закон джоуля – ленца в дифференциальной форме
- •12.8. Работа и мощность электрического тока
- •Лекция 13 законы кирхгофа
- •Лекция 14 диэлектрики в электрическом поле
- •14.1. Дипольные моменты молекул диэлектрика
- •14.2. Поляризация диэлектриков
- •14.3. Электрическое поле диэлектрика
- •14.4. Сегнетоэлектрики
- •15.2. Закон Ампера
- •15.3. Закон Био-Савара-Лапласа
- •15.4. Магнитный поток
- •15.5. Магнитный момент контура с током
- •15.6. Теорема Гаусса для магнитного поля
- •Лекция 16 принцип суперпозиции и его применение
- •16.1. Принцип суперпозиции
- •16.2. Магнитное поле прямолинейного проводника с током
- •16.3. Магнитное поле кругового тока
- •16.4. Магнитное поле в центре прямоугольной рамки
- •1 М 6.5. Закон полного тока
- •16.6. Магнитное поле соленоида (катушки)
- •16.7. Магнитное поле тороида
- •Лекция 17 действие магнитного поля на электрический ток
- •17.1. Взаимодействие параллельных токов
- •17.2. Вращение рамки с током в магнитном поле
- •17.3. Работа магнитного поля по перемещению проводника с током
- •17.4. Работа магнитного поля по перемещению контура с током
- •Лекция 18 действие магнитного поля на движущийся заряд
- •18.1. Сила Лоренца
- •18.2. Движение заряженной частицы в магнитном поле
- •18.3. Масс-спектрометр
- •18.4. Эффект Холла
- •18.5. Ускорители
- •Лекция 19 явление электромагнитной индукции
- •19.1. Опыты Фарадея
- •19.2. Основной закон электромагнитной индукции
- •19.3. Эдс индукции при вращении рамки в магнитном поле
- •19.4. Эдс индукции в движущемся проводнике
- •19.5. Развернутая формула основного закона электромагнитной индукции
- •Лекция 20 явление самоиндукции
- •20.1. Индуктивность контура
- •20.2. Самоиндукция
- •20.3. Индуктивность катушки
- •20.4. Токи при замыкании и размыкании цепи
- •20.5. Энергия магнитного поля
- •Лекция 21
- •21.1. Взаимная индукция
- •21.2. Взаимная индуктивность двух катушек
- •21.3. Трансформатор
- •21.4. Вихревые токи
- •21.5. Скин-эффект
- •Лекция 22 магнитные свойства твердых тел
- •22.1. Магнитные моменты электрона и атома
- •22.2. Диамагнетики
- •22.3. Парамагнетики
- •22.4. Ферромагнетики
- •Свойства ферромагнетиков
- •Лекция 23 ток смещения
- •Лекция 24 основы теории максвелла электромагнитного поля
- •24.1. Первое уравнение Максвелла
- •24.2. Второе уравнение Максвелла
- •24.3. Третье и четвертое уравнения Максвелла
- •24.4. Первое и второе уравнения Максвелла в дифференциальной форме
- •24.5. Третье и четвертое уравнения Максвелла в дифференциальной форме
- •Литература
- •Оглавление
11.5. Энергия заряженного конденсатора
В заряженном конденсаторе аккумулируется электрическая энергия, которая равна работе, необходимой для зарядки конденсатора. Процесс зарядки конденсатора состоит, по сути, в том, что заряд с одной обкладки переносится на другую. Именно это совершает источник напряжения, когда его подключают к конденсатору. Сначала, когда конденсатор не заряжен, для переноса первой порции не требуется работа. Но когда на каждой из обкладок уже имеется заряд, для пополнения его приходится совершать работу против сил электрического отталкивания. Чем больше накопленный на обкладках заряд, тем большую работу необходимо совершить для его увеличения.
Пусть потенциал
обкладки конденсатора, на которой
находится заряд +q,
равен
,
а потенциал обкладки с зарядом -q,
равен
.
Тогда каждый из элементарных зарядов
,
на которые можно разделить заряд +q,
находится в точке с потенциалом
,
а каждый из зарядов, на которые можно
разделить заряд -q,
находится в точке с потенциалом
.
Согласно формуле (11.4.2), энергия такой
системы зарядов равна
,
(11.5.1)
где U - напряжение между обкладками.
Так как емкость
конденсатора равна
,
то
и
И (11.5.1) можно переписать в следующем
виде:
.
(11.5.2)
Эти три выражения определяют энергию, запасенную (аккумулированную) конденсатором и отличаются от формулы (11.4.4) только заменой на U.
11.6. Энергия электрического поля
Выразим энергию заряженного конденсатора через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это для плоского конденсатора, для чего подставим в формулу (11.5.2) выражение для емкости
и получим
.
Для плоского
конденсатора частное
равно напряженности Е
поля в зазоре между обкладками, а
произведение
Sd представляет
собой объем V,
занимаемый полем. Следовательно,
.
(11.6.1)
Таким образом, формула (11.5.2) связывает энергию конденсатора с зарядом на его обкладках, а формула (11.6.1) - с напряженностью поля.
Возникает вопрос: где же сосредоточена энергия и что является носителем энергии - заряды или поле? Электростатика, изучающая постоянные во времени поля неподвижных зарядов, дать точный ответ на этот вопрос не может, так как постоянные поля и обусловившие их заряды не могут существовать обособленно друг от друга. В то же время опыт показывает, что меняющиеся во времени поля могут существовать независимо от возбудивших их зарядов и распространяться в пространстве в виде электромагнитных волн, которые переносят энергию. Этот факт говорит о том, что носителем энергии является поле.
Таким образом, электростатическое поле обладает энергией, которая распределена в поле с некоторой объемней плотностью энергии . В однородном поле плоского конденсатора его энергия W должна быть распределена равномерно по всему объему V поля.
Из формулы (11.6.1) следует, что плотность энергии поля напряженности Е, созданного в среде с , равна
.
(11.6.2)
Плотность электростатической энергии, запасенной в любой части пространства, пропорциональна квадрату напряженности поля в этой области. Используя соотношение
формулу (5.8) можно представить в виде
.
(11.6.3)
Следует отметить, что выражение (11.6.3) для плотности энергии электростатического поля справедливо для любой области пространства, в которой существует электрическое поле.
Для некоторого малого объема электрическое поле можно считать однородным и для этого объема величина энергии определится выражением
,
где dV - малый объем поля.
Интегрируя это выражение по всему объему поля, получим формулу для расчета энергии любого электростатического поля с использованием понятия плотности энергии
.
(11.6.4)