
- •Часть 1 содержит лекции по темам: «Механика», «Электростатика и постоянный ток», «Магнитное поле и электромагнитная индукция».
- •Лекция 1
- •1. Кинематика поступательного движения
- •Механическое движение
- •1.2. Основные понятия и определения
- •Эти уравнения движения эквивалентны векторному уравнению
- •1.3. Скорость
- •1.4. Ускорение
- •Лекция 2
- •2. Кинематика вращательного движения
- •2.1. Вращательное движение
- •2.2. Угловой путь. Угловая скорость. Угловое ускорение
- •2.3. Соотношение между угловыми и линейными величинами
- •Нормальное ускорение равно
- •Как нормальное, так и касательное ускорение растет линейно с увеличением расстояния r от точки до оси вращения.
- •Лекция 3
- •3. Динамика поступательного движения
- •3.1. Сила. Первый закон ньютона
- •Виды сил
- •Первый закон Ньютона
- •3.2. Второй закон ньютона. Масса. Импульс
- •2Ой закон Ньютона. Ускорение, приобретаемое телом, совпадает по направлению с действующей на него силой и равно отношению этой силы к массе тела
- •Выражение (3.2.3) можно записать в виде:
- •3.3. Третий закон ньютона
- •Третий закон
- •3.4. Закон сохранения импульса
- •Лекция 4
- •4. Динамика вращательного движения
- •4.1. Момент инерции относительно оси вращения
- •4.2. Момент силы относительно оси вращения
- •4.3. Момент импульса. Основное уравнение динамики вращательного движения
- •4.4. Закон сохранения момента импульса
- •Лекция 5
- •5. Энергия. Работа. Мощность
- •5.1. Способы вычисления работы
- •5.2. Мощность
- •5.3. Кинетическая энергия
- •5.4. Потенциальная энергия
- •Следовательно для тела, находящегося в поле тяготения Земли
- •По третьему закону Ньютона для преодоления силы упругости надо приложить силу
- •5.5. Закон сохранения энергии
- •6.2. Постулаты специальной теории относительности
- •Кто понимает теорию относительности?
- •Был этот мир глубокой тьмой окутан.
- •6.3. Преобразования лоренца
- •Аналогично можно получить
- •6.4 Закон сложения скоростей
- •Разделив уравнение (6.4.1) на (6.4.2) получим
- •Лекция 7
- •7. Следствия из преобразований лоренца
- •7.1. Длина тела в различных исо
- •7.2. Длительность событий в различных исо
- •Воспользуемся формулами преобразования времени
- •Интервал между событиями
- •7.3. Основной закон релятивистской динамики материальной точки
- •7.4. Взаимосвязь массы и энергии
- •Для изменения кинетической энергии необходимо совершить работу
- •7.5. Значение теории относительности
- •Лекция 8 Электрическое поле
- •8.1. Электрический заряд
- •Линейная плотность электрических зарядов.
- •8.2. Закон Кулона
- •8.2.1. Закон Кулона для точечных зарядов
- •8.2.2. Закон Кулона для заряженных тел
- •8.3. Электрическое поле
- •8.3.1. Понятие электрического поля
- •8.3.2. Напряженность электрического поля
- •8.3.3. Графическое представление электрического поля
- •9.2. Поток вектора электрического смещения (индукции)
- •9.3. Теорема Остроградского-Гаусса
- •9.4. Применение теоремы Остроградского–Гаусса
- •9.4.1. Поле равномерно заряженной сферы
- •9.4.2. Поле равномерно заряженного шара
- •9.4.3. Поле бесконечного равномерно заряженного цилиндра
- •9.4.4. Поле бесконечной равномерно заряженной плоскости
- •Лекция 10 потенциал электростатического поля
- •10.1. Работа сил электростатического поля
- •10.2. Электрический потенциал. Разность потенциалов
- •1 КэВ (килоэлектронвольт) - 103 эВ;
- •1 МэВ (мегаэлектронвольт) - 106 эВ;
- •10.3. Связь между напряженностью электрического поля и потенциалом
- •10.4. Эквипотенциальные поверхности
- •Лекция 11 проводники в электрическом поле
- •11.1. Распределение зарядов в проводнике
- •11.2. Электрическая емкость уединенного проводника
- •11.3. Конденсаторы
- •11.3.1. Плоский конденсатор
- •11.3.2. Цилиндрический конденсатор
- •11.3.3. Сферический конденсатор
- •11.3.4. Соединения конденсаторов
- •11.4. Энергия заряженного проводника
- •11.5. Энергия заряженного конденсатора
- •11.6. Энергия электрического поля
- •Лекция 12 понятие об элекрическом токе
- •12.1. Понятие об электрическом токе
- •12.2. Сила и плотность тока
- •12.3. Закон ома в дифференциальном виде
- •12.4. Электродвижущая сила
- •12.5. Закон ома в интегральной форме
- •12.6. Зависимость электропроводности от температуры
- •12.7. Закон джоуля – ленца в дифференциальной форме
- •12.8. Работа и мощность электрического тока
- •Лекция 13 законы кирхгофа
- •Лекция 14 диэлектрики в электрическом поле
- •14.1. Дипольные моменты молекул диэлектрика
- •14.2. Поляризация диэлектриков
- •14.3. Электрическое поле диэлектрика
- •14.4. Сегнетоэлектрики
- •15.2. Закон Ампера
- •15.3. Закон Био-Савара-Лапласа
- •15.4. Магнитный поток
- •15.5. Магнитный момент контура с током
- •15.6. Теорема Гаусса для магнитного поля
- •Лекция 16 принцип суперпозиции и его применение
- •16.1. Принцип суперпозиции
- •16.2. Магнитное поле прямолинейного проводника с током
- •16.3. Магнитное поле кругового тока
- •16.4. Магнитное поле в центре прямоугольной рамки
- •1 М 6.5. Закон полного тока
- •16.6. Магнитное поле соленоида (катушки)
- •16.7. Магнитное поле тороида
- •Лекция 17 действие магнитного поля на электрический ток
- •17.1. Взаимодействие параллельных токов
- •17.2. Вращение рамки с током в магнитном поле
- •17.3. Работа магнитного поля по перемещению проводника с током
- •17.4. Работа магнитного поля по перемещению контура с током
- •Лекция 18 действие магнитного поля на движущийся заряд
- •18.1. Сила Лоренца
- •18.2. Движение заряженной частицы в магнитном поле
- •18.3. Масс-спектрометр
- •18.4. Эффект Холла
- •18.5. Ускорители
- •Лекция 19 явление электромагнитной индукции
- •19.1. Опыты Фарадея
- •19.2. Основной закон электромагнитной индукции
- •19.3. Эдс индукции при вращении рамки в магнитном поле
- •19.4. Эдс индукции в движущемся проводнике
- •19.5. Развернутая формула основного закона электромагнитной индукции
- •Лекция 20 явление самоиндукции
- •20.1. Индуктивность контура
- •20.2. Самоиндукция
- •20.3. Индуктивность катушки
- •20.4. Токи при замыкании и размыкании цепи
- •20.5. Энергия магнитного поля
- •Лекция 21
- •21.1. Взаимная индукция
- •21.2. Взаимная индуктивность двух катушек
- •21.3. Трансформатор
- •21.4. Вихревые токи
- •21.5. Скин-эффект
- •Лекция 22 магнитные свойства твердых тел
- •22.1. Магнитные моменты электрона и атома
- •22.2. Диамагнетики
- •22.3. Парамагнетики
- •22.4. Ферромагнетики
- •Свойства ферромагнетиков
- •Лекция 23 ток смещения
- •Лекция 24 основы теории максвелла электромагнитного поля
- •24.1. Первое уравнение Максвелла
- •24.2. Второе уравнение Максвелла
- •24.3. Третье и четвертое уравнения Максвелла
- •24.4. Первое и второе уравнения Максвелла в дифференциальной форме
- •24.5. Третье и четвертое уравнения Максвелла в дифференциальной форме
- •Литература
- •Оглавление
4.2. Момент силы относительно оси вращения
Из 2го закона динамики поступательного движения следует, что причиной изменения скорости, появления ускорения, являются силы, действующие на тело.
О
пыт
показывает, что угловое ускорение
вращающегося тела
зависит не только от величины действующей
силы, но и от расстояния от оси вращения
до линии, вдоль которой действует сила
(пример с дверью: у петель нужно приложить
большую силу; чем дальше от оси, тем сила
нужна меньшая).
Пусть на некоторую точку А тела действуют силы, равнодействующая которых . Тело вращается относительно оси. Кратчайшее расстояние l от оси вращения до направления действия силы называется плечом силы (рис. 4.2.1).
Моментом силы
(
)
относительно
оси называется векторное
произведение радиуса вектора
,
проведенного из точки 0 в точку приложения
силы
,
и силы
.
.
Момент силы всегда перпендикулярен плоскости, в которой лежат и . Направление вектора определяется по правилу векторного произведения или по правилу правой руки: 4 согнутых пальца указывают направление, в котором сила вращает тело, а большой отогнутый направление - момента силы .
Рис. 4.2.2
Модуль момента силы (из геометрии) численно равен площади параллелограмма построенного на векторах и .
Тогда модуль
момента силы
,
где
- плечо силы – длина перпендикуляра,
опущенного из точки 0 на линию действия
силы
.
.
.
4.3. Момент импульса. Основное уравнение динамики вращательного движения
Пусть
положение материальной точки относительно
некоторой точки 0, характеризуется
радиус-вектором
.
Моментом
импульса материальной
точки относительно точки 0 называется
векторная физическая величина,
определяемая векторным произведением
радиус-вектора
материальной точки, проведенного из
точки О, на импульс
этой
материальной точки:
.
- псевдовектор,
его направление совпадает с направлением
поступательного движения правого винта
при его вращении от
к
.
Модуль вектора момента импульса:
Если
,
то
.
Но
.
Подставив, получим
.
, (
).
Продифференцируем
по времени выражение
и учтем, что,
которая совпадает по направлению с
(
).
.
Так как
,
то
или
.
Подставим в это уравнение , получим
.
Если применим это уравнение ко всему телу, а не к одной точке, то придется просуммировать все моменты инерции и все моменты сил.
Получим
,
- полный момент
всех внешних сил, действующих на тело,
относительно оси. При этом суммировании
учитывается знак момента силы. Считается
положительным такой момент силы, если
точка приложения силы обходит ось по
часовой стрелке и отрицательным – если
против часовой стрелки.
- момент инерции
тела.
Окончательно получаем
.
Это основное уравнение динамики вращательного движения. Угловое ускорение, полученное вращающимся телом, прямо пропорционально суммарному моменту сил, действующих на это тело и обратно пропорционально моменту инерции тела.
Момент инерции J – свойство тела к изменению угловой скорости под действием момента внешних сил.
- момент импульса
тела относительно любой неподвижной
точки 0.
Разные тела под влиянием равных моментов сил M = const получают одинаковые угловые ускорения, если одинаковы их моменты инерции J. Т.о. различные силы эквивалентны в смысле вызываемого ими изменения угловой скорости, если равны их моменты М.