Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Э-н Сенсорная экология-1

.docx
Скачиваний:
5
Добавлен:
16.01.2023
Размер:
17.89 Кб
Скачать
  1. Объект, предмет и задачи сенсорной экологии.

Сенсорная экология является частью физиологической экологии, она изучает принципы формирования сенсорных способностей организма в различных экологических условиях и оценку экологического состояния информационного поля внешней среды. Разделами сенсорной экологии являются визуальная экология, звуковая экология, и запаховая (обонятельная) экология.

  1. Строение и функции сенсорных систем.

Сенсорной системой (анализатором, по И. П. Павлову) называют часть нервной системы, состоящую из воспринимающих элементов — сенсорных рецепторов (сенсорные органы, или органы чувств), получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию (вплоть до коры головного мозга). Таким образом, сенсорная система вводит информацию в мозг и анализирует ее. В сенсорных системах важная функциональная роль принадлежит вспомогательным структурам, обеспечивающим более эффективную передачу внешнего стимула к рецепторам (усиление, фокусирование, фильтрация). Например, в зрении - оптическая система глаза, в слухе - наружное и среднее ухо и т. д.

Основными функциями сенсорных систем являются:

- рецепция внешнего сигнала (первичные процессы преобразования энергии внешнего раздражителя в возбуждение рецепторной клетки - рецепторный потенциал);

- преобразование рецепторного потенциала в импульсную активность нервных путей;

- классификация и опознание сигнала;

- запуск ответной реакции организма (двигательной или вегетативной).

Общие принципы работы сенсорных систем:

1. Преобразование силы раздражения в частотный код импульсов - универсальный принцип действия любого сенсорного рецептора.

Причём во всех сенсорных рецепторах преобразование начинается с вызванного стимулом изменения свойств клеточной мембраны. Под действием стимула (раздражителя) в мембране клеточного рецептора должны открыться (а в фоторецепторах, наоборот, закрыться) стимул-управляемые ионные каналы. Через них начинается поток ионов и развивается состояние деполяризации мембраны.

2. Топическое соответствие - поток возбуждения (информационный поток) во всех передаточных структурах соответствует значимым характеристикам раздражителя. Это означает, что важные признаки раздражителя будут закодированы в виде потока нервных импульсов и нервной системой будет построен внутренний сенсорный образ, похожий на раздражитель - нервная модель стимула.

3. Детекция - это выделение качественных признаков. Нейроны-детекторы реагируют на определенные признаки объекта и не реагируют на все остальное. Нейроны-детекторы отмечают контрастные переходы. Детекторы придают сложному сигналу осмысленность и уникальность. В разных сигналах они выделяют одинаковые параметры. К примеру, только детекция поможет вам отделить контуры маскирующейся камбалы от окружающего её фона.

4. Искажение информации об исходном объекте на каждом уровне передачи возбуждения.

5. Специфичность рецепторов и органов чувств. Их чувствительность максимальна к определенному типу раздражителя с определенной интенсивностью.

6. Закон специфичности сенсорных энергий: ощущение определяется не стимулом, а раздражаемым сенсорным органом. Ещё точнее можно сказать так: ощущение определяется не раздражителем, а тем сенсорным образом, который строится в высших нервных центрах в ответ на действие раздражителя. Например, источник болевого раздражения может находиться в одном месте тела, а ощущение боли может проецироваться на совсем другой участок. Или же: один и тот же раздражитель может вызывать очень разные ощущения в зависимости от адаптации к нему нервной системы и/или органа чувств.

7. Обратная связь между последующими и предшествующими структурами. Последующие структуры могут менять состояние предшествующих и менять таким способом характеристики приходящего к ним потока возбуждения.

Специфичность сенсорных систем предопределяется их структурой. Структура ограничивает их реакции на один раздражитель и способствует восприятию других.

Всем анализаторным системам высших позвоночных животных и человека свойственны следующие основные принципы строения.

1. Многослойность, т.е. наличие нескольких слоев нервных клеток, первый из которых связан с рецепторными элементами, а последний – с нейронами ассоциативных отделов коры полушарий большого мозга. Между собой слои связаны проводящими путями, образованными аксонами их нейронов.

2. Многоканальность анализаторных систем означает наличие в каждом из их слоев множества (обычно десятки тысяч, а иногда до миллионов) нервных элементов, связанных с множеством элементов следующего слоя, которые в свою очередь посылают нервные импульсы к элементам более высокого уровня. Наличие множества каналов обеспечивает анализаторам животных большую надежность и тонкость анализа.

3. Неодинаковое число элементов в соседних слоях, так называемых сенсорных «воронок». Физиологический смысл явления суживающихся воронок сводится к уменьшению количества информации, передаваемой в мозг, а в расширяющихся «воронках» - к обеспечению более дробного и сложного анализа разных признаков сигналов.

4. Дифференциация анализаторов по вертикали по горизонтали. Дифференциация по вертикали заключается в образовании отделов, состоящих обычно из того или иного числа слоев нервных элементов. Отдел – более крупное морфофункциональное образование, чем слой элементов. Каждый такой отдел (например, обонятельные луковицы, кохлеарные ядра или коленчатые тела) имеет определенную функцию.

Различают обычно рецепторный, или периферический, отдел анализаторной системы, один или чаще несколько промежуточных отделов и корковый отдел анализаторов.

Дифференциация анализаторных систем по горизонтали заключается в различных свойствах рецепторов, нейронов и связей между ними в пределах каждого из слоев.

  1. Соотношение терминов – сенсорная система, орган чувств и анализатор Павлова.

Орган чувств -

Сенсорной системой (анализатором, по И. П. Павлову) называют часть нервной системы, состоящую из воспринимающих элементов — сенсорных рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию.

И. П. Павлов считал анализатором совокупность рецепторов (периферический отдел анализатора), путей проведения возбуждения (проводниковый отдел), а также нейронов, анализирующих раздражитель в коре мозга (центральный отдел анализатора).

Отличия между понятиями «сенсорная система» и «анализатор»

1) Сенсорная система активна, а не пассивна в передаче возбуждения.

2) В состав сенсорной системы входят вспомогательные структуры, обеспечивающие оптимальную настройку и работу рецепторов.

3) В состав сенсорной системы входят вспомогательные низшие нервные центры, которые не просто передают сенсорное возбуждение дальше, а меняют его характеристики и разделяют на несколько потоков, посылая их по разным направлениям.

4) Сенсорная система имеет обратные связи между последующими и предшествующими структурами, передающими сенсорное возбуждение.

5) Обработка и переработка сенсорного возбуждения происходит не только в коре головного мозга, но и в нижележащих структурах.

6) Сенсорная система активно подстраивается под восприятие раздражителя и приспосабливается к нему, т. е. происходит её адаптация.

7) Сенсорная система сложнее, чем анализатор.

  1. Методы изучения сенсорных систем.

Для изучения сенсорных систем используют электрофизиологические, нейрохимические, поведенческие и морфологические исследования на животных, психофизиологический анализ восприятия у здорового и больного человека, методы картирования его мозга. Сенсорные функции также моделируют и протезируют.

Моделирование сенсорных функций позволяет изучать на биофизических или компьютерных моделях такие функции и свойства сенсорных систем, которые пока недоступны для экспериментальных методов. Протезирование сенсорных функций практически проверяет истинность наших знаний о них. Примером могут быть электро-фосфеновые зрительные протезы, которые восстанавливают зрительное восприятие у слепых людей разными сочетаниями точечных электрических раздражений зрительной области коры большого мозга.