
- •1. Понятие о логической форме мысли и логическом законе. Предмет логики
- •2. Основные этапы развития логики. Значение логики для юристов
- •3. Язык и языковая система. Специфика языка права
- •Взамен этих выражений вводят юр. Термины посредством след. Определений (сфера приложения выражения сужается):
- •Придание выражению доп. Смысла по сравнению с общепринятым (сфера приложения термина сужается):
- •Введение в качестве юр. Терминов выражений, кот. Не было в обыденном языке:
- •4. Учение логики об именах
- •5. Основные семантические категории выражения языка
- •6. Суждение. Простые суждения: атрибутивные и суждения об отношениях
- •По качеству:
- •7. Сложные суждения
- •8. Отношения между суждениями
- •Основные:
- •Производные:
- •9. Отрицание суждений
- •10. Логическая и прагматическая характеристика вопросов и ответов
- •Ложные:
- •Истинные:
- •11. Условно-категорические и разделительно-категоричекие умозаключения. Дилемма
- •Утверждающий модус:
- •Утверждающе-отрицающий модус:
- •Отрицающе-утверждающий модус:
- •12. Язык логики высказываний. Табличные определения логических терминов
- •13. Способ построения таблиц истинности для формул логики высказывания
- •14. Метод исследования рассуждений посредством таблично построенной логики высказывания
- •15. Способ установления отношений между суждениями посредством таблично построенной логики высказываний
- •Основные:
- •Производные:
- •16. Выводы из категорических суждений: умозаключения по логическому квадрату, обращение и превращение
- •18. Категорический силлогизм. Состав, общие правила силлогизма
- •Правила суждений:
- •Правила терминов:
- •19. Категорический силлогизм. Фигуры. Графический способ анализа. Энтимема силлогизма
- •Фигуры и их правила:
- •Силлогизм правильный.
- •20. Обобщающая индукция: статистическая и нестатистическая
- •21. Методы установления причинных связей между явлениями
- •Метод (единственного) сходства.
- •Метод единственного различия.
- •Соединительный метод сходства и различия.
- •Метод сопутствующих изменений.
- •Метод останков.
- •22. Заключение по аналогии
- •Научная (строгая):
- •В прав. Познании:
- •23. Понятие. Объём понятия. Содержание понятия. Закон обратного отношения
- •24. Виды понятий
- •По количественным хар-кам объёмов понятий:
- •Понятия с непустым объёмом:
- •По типу обобщаемых предметов:
- •25. Отношения между понятиями по объёмам. Обобщение и ограничение понятий
- •26. Определение. Виды определений и правила. Ошибки в определениях
- •По форме:
- •Нельзя принимать номинальные определения за реальные
- •27. Приёмы разъяснения выражений, сходные с определениями
- •28. Деление: таксономическое и мереологическое. Правила деления. Ошибки. Классификация
- •Ошибки:
- •Ошибки:
- •30. Гипотеза и следственная версия
- •Развитие предположения:
- •32. Аргументация и логическое доказательство (доказывание). Состав, виды и способы
- •36. Правила аргументации и критики по отношению к тезису. Ошибки и уловки
- •Тезис не должен изменяться в процессе аргументации и критики без специальных оговорок.
- •37. Правила аргументации и критики по отношению к аргументам. Ошибки и уловки
- •Аргументы должны быть суждениями, полностью или частично обоснованными.
- •3. “Необоснованная ссылка на авторитет”.
- •Аргументы должны быть релевантными по отношению к тезису.
Утверждающе-отрицающий модус:
A v B, В
А
A v B, А
В
Это преступление совершено путём действия (А) или бездействия (В). Это преступление совершено путём бездействия (В). Следовательно, оно совершено путём действия (А).
Отрицающе-утверждающий модус:
A v B, А
В
A v B, В
А
A v B, А
В
A v B, В
А
Дилемма – умозаключение из 3 посылок:
1 посылка – разд. суждение
2 посылки – усл. суждения
Дилеммы:
|
Конструктивные |
Деструктивные |
Простые |
A → С, В → С А v В С |
A → В, А → С В v С А |
Сложные |
A → В, С → D А v C B v D |
A → В, С → D В v D А v C |
Простая конструктивная дилемма:
Если смерть – переход в небытие, то на благо;
Если смерть – переход в мир иной, то на благо;
Смерть – либо переход в небытие, либо переход в мир иной.
Смерть – благо.
Условные умозаключения – умозаключения, у кот. посылки и заключения – условные суждения.
12. Язык логики высказываний. Табличные определения логических терминов
Одним из способов описания выводов логики высказываний является табличное построение логики высказываний.
Логика высказываний – раздел символической логики, поэтому в ней используется язык символов.
Символы этого языка:
p, q, r, s, p1, q1,... — пропозициональные символы (пропозициональные переменные, символы для суждений)
, &, , →, ↔ — лог. термины (лог. константы)
(,) — скобки
Определение формулы:
Пропозициональная переменная есть формула
Если А - формула и В - формула, то A, (А & В), (A B), (А В), (А В) — формулы
Ничто иное не есть формула
Принимаются соглашения об опускании скобок в формулах. Опускаются внеш. скобки у отдельно стоящей формулы. Считают, что знак связывает теснее, чем знаки &, v, , ; знак & — теснее, чем v, , ; знак v — теснее, чем , ; знак теснее, чем .
При табличном построении логики высказываний лог. константы определяются посредством таблиц истинности. При этом принимается, что каждое высказывание имеет одно значение — или «истина», или «ложь».
Элементарная формула - формула, являющаяся пропозициональной переменной.
Слож. формула - формула, содержащая лог. константы. В слож. формуле можно выделить лог. константу, называемую глав. лог. константой формулы.
Каждую сложную формулу логики высказываний можно единственным образом представить в виде:
А
А & В
A v В
А В
А В
А и В - формулы, являющиеся частями слож. формулы. Подформулы, конечно, в свою очередь могут быть слож. формулами.
Напр., ((p v q) (р & q)).
Представив таким образом слож. формулу, мы выделяем в ней последнюю по построению лог. константу – глав. лог. константу формулы.