Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

PCI_22

.pdf
Скачиваний:
16
Добавлен:
10.02.2015
Размер:
2.6 Mб
Скачать

Revision 2.2

Chapter 1

Introduction

1.1. Specification Contents

7KH 3&, /RFDO %XV LV D KLJK SHUIRUPDQFH ELW RU ELW EXV ZLWK PXOWLSOH[HG DGGUHVV DQG GDWD OLQHV 7KH EXV LV LQWHQGHG IRU XVH DV DQ LQWHUFRQQHFW PHFKDQLVP EHWZHHQ KLJKO\ LQWHJUDWHG SHULSKHUDO FRQWUROOHU FRPSRQHQWV SHULSKHUDO DGG LQ ERDUGV DQG SURFHVVRU PHPRU\ V\VWHPV

7KH 3&, /RFDO %XV 6SHFLILFDWLRQ 5HY LQFOXGHV WKH SURWRFRO HOHFWULFDO PHFKDQLFDO DQG FRQILJXUDWLRQ VSHFLILFDWLRQ IRU 3&, /RFDO %XV FRPSRQHQWV DQG H[SDQVLRQ ERDUGV 7KH HOHFWULFDO GHILQLWLRQ SURYLGHV IRU 9 DQG 9 VLJQDOLQJ HQYLURQPHQWV

7KH 3&, /RFDO %XV 6SHFLILFDWLRQ GHILQHV WKH 3&, KDUGZDUH HQYLURQPHQW &RQWDFW WKH 3&, 6,* IRU PRUH LQIRUPDWLRQ RQ WKH DYDLODEOH 3&, GHVLJQ JXLGHV DQG WKH 3&, %,26 6SHFLILFDWLRQ )RU LQIRUPDWLRQ RQ KRZ WR MRLQ WKH 3&, 6,* RU WR REWDLQ WKHVH GRFXPHQWV UHIHU WR 6HFWLRQ

1.2. Motivation

:KHQ WKH 3&, /RFDO %XV 6SHFLILFDWLRQ ZDV RULJLQDOO\ GHYHORSHG LQ JUDSKLFV RULHQWHG RSHUDWLQJ V\VWHPV VXFK DV :LQGRZV DQG 26 KDG FUHDWHG D GDWD ERWWOHQHFN EHWZHHQ WKH SURFHVVRU DQG LWV GLVSOD\ SHULSKHUDOV LQ VWDQGDUG 3& , 2 DUFKLWHFWXUHV 0RYLQJ SHULSKHUDO IXQFWLRQV ZLWK KLJK EDQGZLGWK UHTXLUHPHQWV FORVHU WR WKH V\VWHP V SURFHVVRU EXV FDQ HOLPLQDWH WKLV ERWWOHQHFN 6XEVWDQWLDO SHUIRUPDQFH JDLQV DUH VHHQ ZLWK JUDSKLFDO XVHU LQWHUIDFHV *8,V DQG RWKHU KLJK EDQGZLGWK IXQFWLRQV L H IXOO PRWLRQ YLGHR 6&6, /$1V HWF ZKHQ D ORFDO EXV GHVLJQ LV XVHG

3&, VXFFHVVIXOO\ PHW WKHVH GHPDQGV RI WKH LQGXVWU\ DQG LV QRZ WKH PRVW ZLGHO\ DFFHSWHG DQG LPSOHPHQWHG H[SDQVLRQ VWDQGDUG LQ WKH ZRUOG

1

Revision 2.2

1.3. PCI Local Bus Applications

7KH 3&, /RFDO %XV KDV EHHQ GHILQHG ZLWK WKH SULPDU\ JRDO RI HVWDEOLVKLQJ DQ LQGXVWU\ VWDQGDUG KLJK SHUIRUPDQFH ORFDO EXV DUFKLWHFWXUH WKDW RIIHUV ORZ FRVW DQG DOORZV GLIIHUHQWLDWLRQ :KLOH WKH SULPDU\ IRFXV LV RQ HQDEOLQJ QHZ SULFH SHUIRUPDQFH SRLQWV LQ WRGD\ V V\VWHPV LW LV LPSRUWDQW WKDW D QHZ VWDQGDUG DOVR DFFRPPRGDWHV IXWXUH V\VWHP UHTXLUHPHQWV DQG EH DSSOLFDEOH DFURVV PXOWLSOH SODWIRUPV DQG DUFKLWHFWXUHV )LJXUH

VKRZV WKH PXOWLSOH GLPHQVLRQV RI WKH 3&, /RFDO %XV

6HUYHUV

 

9

 

 

 

+LJK (QG

 

$XWR

 

64-bit Upgrade

'HVNWRSV

9

&RQILJXUDWLRQ

Path

 

/RZ 0LG

 

 

 

 

 

5DQJH

 

;

$OSKD $;370

)XWXUH

'HVNWRS

 

$UFKLWHFWXUH

3URFHVVRU

 

&38V

 

 

3URFHVVRU

 

)DPLOLHV

 

 

 

 

0RELOH

 

)DPLOLHV

 

 

 

)LJXUH 3&, /RFDO %XV $SSOLFDWLRQV

:KLOH WKH LQLWLDO IRFXV RI ORFDO EXV DSSOLFDWLRQV KDV EHHQ RQ ORZ WR KLJK HQG GHVNWRS V\VWHPV WKH 3&, /RFDO %XV DOVR FRPSUHKHQGV WKH UHTXLUHPHQWV IURP PRELOH DSSOLFDWLRQV XS WKURXJK GHSDUWPHQWDO VHUYHUV 7KH YROW UHTXLUHPHQWV RI WKH PRELOH HQYLURQPHQW DQG WKH LPPLQHQW PRYH IURP YROWV WR YROWV LQ GHVNWRS DSSOLFDWLRQV PXVW EH DFFRXQWHG IRU LQ D QHZ VWDQGDUG 7KH 3&, /RFDO %XV VSHFLILHV ERWK YROWDJHV DQG GHVFULEHV D FOHDU PLJUDWLRQ SDWK EHWZHHQ WKHP

7KH 3&, FRPSRQHQW DQG DGG LQ FDUG LQWHUIDFH LV SURFHVVRU LQGHSHQGHQW HQDEOLQJ DQ HIILFLHQW WUDQVLWLRQ WR IXWXUH SURFHVVRU JHQHUDWLRQV DQG XVH ZLWK PXOWLSOH SURFHVVRU DUFKLWHFWXUHV 3URFHVVRU LQGHSHQGHQFH DOORZV WKH 3&, /RFDO %XV WR EH RSWLPL]HG IRU , 2 IXQFWLRQV HQDEOHV FRQFXUUHQW RSHUDWLRQ RI WKH ORFDO EXV ZLWK WKH SURFHVVRU PHPRU\ VXEV\VWHP DQG DFFRPPRGDWHV PXOWLSOH KLJK SHUIRUPDQFH SHULSKHUDOV LQ DGGLWLRQ WR JUDSKLFV PRWLRQ YLGHR /$1 6&6, )'', KDUG GLVN GULYHV HWF 0RYHPHQW WR HQKDQFHG YLGHR DQG PXOWLPHGLD GLVSOD\V L H +'79 DQG ' JUDSKLFV DQG RWKHU KLJK EDQGZLGWK , 2 ZLOO FRQWLQXH WR LQFUHDVH ORFDO EXV EDQGZLGWK UHTXLUHPHQWV $ WUDQVSDUHQW ELW H[WHQVLRQ RI WKH ELW GDWD DQG DGGUHVV EXVHV LV GHILQHG GRXEOLQJ WKH EXV EDQGZLGWK DQG RIIHULQJ IRUZDUG DQG EDFNZDUG FRPSDWLELOLW\ RI ELW DQG ELW 3&, /RFDO %XV SHULSKHUDOV $ IRUZDUG DQG EDFNZDUG FRPSDWLEOH 0+] VSHFLILFDWLRQ LV DOVR GHILQHG GRXEOLQJ WKH EDQGZLGWK FDSDELOLWLHV RI WKH 0+] GHILQLWLRQ

7KH 3&, /RFDO %XV VWDQGDUG RIIHUV DGGLWLRQDO EHQHILWV WR WKH XVHUV RI 3&, EDVHG V\VWHPV &RQILJXUDWLRQ UHJLVWHUV DUH VSHFLILHG IRU 3&, FRPSRQHQWV DQG DGG LQ FDUGV $ V\VWHP ZLWK HPEHGGHG DXWR FRQILJXUDWLRQ VRIWZDUH RIIHUV WUXH HDVH RI XVH IRU WKH V\VWHP XVHU E\ DXWRPDWLFDOO\ FRQILJXULQJ 3&, DGG LQ FDUGV DW SRZHU RQ

2

Revision 2.2

1.4. PCI Local Bus Overview

7KH EORFN GLDJUDP )LJXUH VKRZV D W\SLFDO 3&, /RFDO %XV V\VWHP DUFKLWHFWXUH 7KLV H[DPSOH LV QRW LQWHQGHG WR LPSO\ DQ\ VSHFLILF DUFKLWHFWXUDO OLPLWV ,Q WKLV H[DPSOH WKH SURFHVVRU FDFKH PHPRU\ VXEV\VWHP LV FRQQHFWHG WR 3&, WKURXJK D 3&, EULGJH 7KLV EULGJH SURYLGHV D ORZ ODWHQF\ SDWK WKURXJK ZKLFK WKH SURFHVVRU PD\ GLUHFWO\ DFFHVV 3&, GHYLFHV PDSSHG DQ\ZKHUH LQ WKH PHPRU\ RU , 2 DGGUHVV VSDFHV ,W DOVR SURYLGHV D KLJK EDQGZLGWK SDWK DOORZLQJ 3&, PDVWHUV GLUHFW DFFHVV WR PDLQ PHPRU\ 7KH EULGJH PD\ RSWLRQDOO\ LQFOXGH VXFK IXQFWLRQV DV GDWD EXIIHULQJ SRVWLQJ DQG 3&, FHQWUDO IXQFWLRQVH J DUELWUDWLRQ

 

 

 

 

 

3URFHVVRU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

&DFKH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%ULGJH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

$XGLR

 

 

0RWLRQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0HPRU\

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9LGHR

 

 

 

 

 

 

 

 

 

 

 

 

'5$0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

&RQWUROOHU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3&,

/RFDO %XV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/$1

 

 

 

6&6,

 

 

 

 

 

 

([S

%XV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*UDSKLFV

 

 

 

 

 

 

 

 

 

 

 

 

;IDFH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%DVH , 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)XQFWLRQV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)LJXUH 3&, 6\VWHP %ORFN 'LDJUDP

7\SLFDO 3&, /RFDO %XV LPSOHPHQWDWLRQV ZLOO VXSSRUW XS WR IRXU DGG LQ ERDUG FRQQHFWRUV DOWKRXJK H[SDQVLRQ FDSDELOLW\ LV QRW UHTXLUHG 7KH 3&, DGG LQ ERDUG FRQQHFWRU LV D 0LFUR &KDQQHO 0& VW\OH FRQQHFWRU 7KH VDPH 3&, H[SDQVLRQ ERDUG FDQ EH XVHG LQ ,6$ (,6$ DQG 0& EDVHG V\VWHPV 3&, H[SDQVLRQ FDUGV XVH DQ HGJH FRQQHFWRU DQG PRWKHUERDUGV WKDW DOORZ D IHPDOH FRQQHFWRU WR EH PRXQWHG SDUDOOHO WR WKH V\VWHP EXV FRQQHFWRUV 7R SURYLGH D TXLFN DQG HDV\ WUDQVLWLRQ IURP 9 WR 9 FRPSRQHQW WHFKQRORJ\ 3&, GHILQHV WZR DGG LQ ERDUG FRQQHFWRUV RQH IRU WKH 9 VLJQDOLQJ HQYLURQPHQW DQG RQH IRU WKH 9 VLJQDOLQJ HQYLURQPHQW

7KUHH VL]HV RI 3&, DGG LQ ERDUGV DUH GHILQHG ORQJ VKRUW DQG YDULDEOH VKRUW OHQJWK 6\VWHPV DUH QRW UHTXLUHG WR VXSSRUW DOO ERDUG W\SHV 7KH ORQJ ERDUGV LQFOXGH DQ ,6$ (,6$ H[WHQGHU WR HQDEOH WKHP WR XVH ,6$ (,6$ FDUG JXLGHV LQ ,6$ (,6$ V\VWHPV 7R DFFRPPRGDWH WKH 9 DQG 9 VLJQDOLQJ HQYLURQPHQWV DQG WR IDFLOLWDWH D VPRRWK PLJUDWLRQ SDWK EHWZHHQ WKH YROWDJHV WKUHH DGG LQ ERDUG HOHFWULFDO W\SHV DUH VSHFLILHG D

YROW ERDUG ZKLFK SOXJV LQWR RQO\ WKH 9 FRQQHFWRU D XQLYHUVDO ERDUG ZKLFK SOXJV LQWR ERWK 9 DQG 9 FRQQHFWRUV DQG D YROW ERDUG ZKLFK SOXJV LQWR RQO\ WKH 9 FRQQHFWRU

7ZR W\SHV RI 3&, EDFNSODWHV DUH FXUUHQWO\ GHILQHG ,6$ (,6$ DQG 0& FRPSDWLEOH 7KH LQWHUFKDQJHDEOH EDFNSODWHV VKRXOG ERWK EH VXSSOLHG ZLWK HDFK 3&, /RFDO %XV DGG LQ ERDUG VKLSSHG WR DFFRPPRGDWH XVDJH RI WKH ERDUG LQ DOO WKUHH V\VWHP W\SHV

3

Revision 2.2

1.5. PCI Local Bus Features and Benefits

7KH 3&, /RFDO %XV ZDV VSHFLILHG WR HVWDEOLVK D KLJK SHUIRUPDQFH ORFDO EXV VWDQGDUG IRU VHYHUDO JHQHUDWLRQV RI SURGXFWV 7KH 3&, VSHFLILFDWLRQ SURYLGHV D VHOHFWLRQ RI IHDWXUHV WKDW FDQ DFKLHYH PXOWLSOH SULFH SHUIRUPDQFH SRLQWV DQG FDQ HQDEOH IXQFWLRQV WKDW DOORZ GLIIHUHQWLDWLRQ DW WKH V\VWHP DQG FRPSRQHQW OHYHO )HDWXUHV DUH FDWHJRUL]HG E\ EHQHILW DV IROORZV

High Performance

Transparent upgrade from 32-bit data path at 33 MHz

 

 

(132 MB/s peak) to 64-bit data path at 33 MHz

 

 

(264 MB/s peak) and from 32-bit data path at 66 MHz

 

 

(264 MB/s peak) to 64-bit data path at 66 MHz

 

 

(528 MB/s peak).

 

Variable length linear and cacheline wrap mode bursting

 

 

for both read and writes improves write dependent

 

 

graphics performance.

 

Low latency random accesses (60-ns write access latency

 

 

for 33 MHz PCI or 30-ns for 66 MHz PCI to slave

 

 

registers from master parked on bus).

 

Capable of full concurrency with processor/memory

 

 

subsystem.

 

Synchronous bus with operation up to 33 MHz or 66 MHz.

 

Hidden (overlapped) central arbitration.

Low Cost

Optimized for direct silicon (component) interconnection;

 

 

i.e., no glue logic. Electrical/driver (i.e., total load) and

 

 

frequency specifications are met with standard ASIC

 

 

technologies and other typical processes.

 

Multiplexed architecture reduces pin count (47 signals for

 

 

target; 49 for master) and package size of PCI components

 

 

or provides for additional functions to be built into a

 

 

particular package size.

 

Single PCI add-in card works in ISA-, EISA-, or

 

 

MC-based systems (with minimal change to existing

 

 

chassis designs), reducing inventory cost and end user

 

 

confusion.

Ease of Use

Enables full auto configuration support of PCI Local Bus

 

 

add-in boards and components. PCI devices contain

 

 

registers with the device information required for

 

 

configuration.

Longevity

Processor independent. Supports multiple families of

 

 

processors as well as future generations of processors (by

 

 

bridges or by direct integration).

 

Support for 64-bit addressing.

Both 5-volt and 3.3-volt signaling environments are specified. Voltage migration path enables smooth industry transition from 5 volts to 3.3 volts.

4

Revision 2.2

Interoperability/

Reliability

Flexibility

Data Integrity

Software

Compatibility

Small form factor add-in boards.

Present signals allow power supplies to be optimized for the expected system usage by monitoring add-in boards that could surpass the maximum power budgeted by the system.

Over 2000 hours of electrical SPICE simulation with hardware model validation.

Forward and backward compatibility of 32-bit and 64-bit add-in boards and components.

Forward and backward compatibility with 33 MHz and 66 MHz add-in boards and components.

Increased reliability and interoperability of add-in cards by comprehending the loading and frequency requirements of the local bus at the component level, eliminating buffers and glue logic.

MC-style expansion connectors.

Full multi-master capability allowing any PCI master peer- to-peer access to any PCI master/target.

A shared slot accommodates either a standard ISA, EISA, or MC board or a PCI add-in board (refer to Chapter 5, "Mechanical Specification" for connector layout details).

Provides parity on both data and address and allows implementation of robust client platforms.

PCI components can be fully compatible with existing driver and applications software. Device drivers can be portable across various classes of platforms.

5

Revision 2.2

1.6. Administration

7KLV GRFXPHQW LV PDLQWDLQHG E\ WKH 3&, 6,* 7KH 3&, 6,* DQ XQLQFRUSRUDWHG DVVRFLDWLRQ RI PHPEHUV RI WKH PLFURFRPSXWHU LQGXVWU\ ZDV HVWDEOLVKHG WR PRQLWRU DQG HQKDQFH WKH GHYHORSPHQW RI WKH 3&, /RFDO %XV LQ WKUHH ZD\V 7KH 3&, 6,* LV FKDUWHUHG WR

0DLQWDLQ WKH IRUZDUG FRPSDWLELOLW\ RI DOO 3&, /RFDO %XV UHYLVLRQV RU DGGHQGD

0DLQWDLQ WKH 3&, /RFDO %XV VSHFLILFDWLRQ DV D VLPSOH HDV\ WR LPSOHPHQW VWDEOH WHFKQRORJ\ LQ WKH VSLULW RI LWV GHVLJQ

&RQWULEXWH WR WKH HVWDEOLVKPHQW RI WKH 3&, /RFDO %XV DV DQ LQGXVWU\ ZLGH VWDQGDUG DQG WR WKH WHFKQLFDO ORQJHYLW\ RI WKH 3&, /RFDO %XV DUFKLWHFWXUH

6,* PHPEHUVKLS LV DYDLODEOH WR DOO DSSOLFDQWV ZLWKLQ WKH PLFURFRPSXWHU LQGXVWU\ %HQHILWV RI PHPEHUVKLS LQFOXGH

$ELOLW\ WR VXEPLW VSHFLILFDWLRQ UHYLVLRQV DQG DGGHQGXP SURSRVDOV

3DUWLFLSDWLRQ LQ VSHFLILFDWLRQ UHYLVLRQV DQG DGGHQGXP SURSRVDOV

$XWRPDWLFDOO\ UHFHLYH UHYLVLRQV DQG DGGHQGD

9RWLQJ ULJKWV WR GHWHUPLQH WKH 6WHHULQJ &RPPLWWHH PHPEHUVKLS

9HQGRU ,' QXPEHU DVVLJQPHQW

3&, WHFKQLFDO VXSSRUW

3&, VXSSRUW GRFXPHQWDWLRQ DQG PDWHULDOV

3DUWLFLSDWLRQ LQ 6,* VSRQVRUHG WUDGH VKRZ VXLWHV DQG HYHQWV FRQIHUHQFHV DQG RWKHU 3&, /RFDO %XV SURPRWLRQDO DFWLYLWLHV

3DUWLFLSDWLRQ LQ WKH FRPSOLDQFH SURJUDP LQFOXGLQJ SDUWLFLSDWLRQ DW WKH ³3&, &RPSOLDQFH :RUNVKRSV´ DQG WKH RSSRUWXQLW\ WR EH LQFOXGHG LQ WKH ³3&, ,QWHJUDWRU¶V /LVW´

$Q DQQXDO 3&, 6SHFLDO ,QWHUHVW *URXS PHPEHUVKLS FRVWV 86 7KLV PHPEHUVKLS IHH VXSSRUWV WKH DFWLYLWLHV RI WKH 3&, 6,* LQFOXGLQJ WKH FRPSOLDQFH SURJUDP 3&, 6,* DGPLQLVWUDWLRQ DQG YHQGRU ,' LVVXLQJ DQG DGPLQLVWUDWLRQ

)RU LQIRUPDWLRQ RQ KRZ WR EHFRPH D 6,* PHPEHU RU RQ REWDLQLQJ 3&, /RFDO %XV GRFXPHQWDWLRQ SOHDVH FRQWDFW

3&, 6SHFLDO ,QWHUHVW *URXS

1 ( .DWKU\Q

+LOOVERUR 2UHJRQ

3KRQH ,QVLGH WKH 8 6

2XWVLGH WKH 8 6 )D[

H PDLO SFLVLJ#SFLVLJ FRP http://www.pcisig.com

6

Revision 2.2

Chapter 2

Signal Definition

7KH 3&, LQWHUIDFH UHTXLUHV D PLQLPXP RI SLQV IRU D WDUJHW RQO\ GHYLFH DQG SLQV IRU D PDVWHU WR KDQGOH GDWD DQG DGGUHVVLQJ LQWHUIDFH FRQWURO DUELWUDWLRQ DQG V\VWHP IXQFWLRQV )LJXUH VKRZV WKH SLQV LQ IXQFWLRQDO JURXSV ZLWK UHTXLUHG SLQV RQ WKH OHIW VLGH DQG RSWLRQDO SLQV RQ WKH ULJKW VLGH 7KH GLUHFWLRQ LQGLFDWLRQ RQ VLJQDOV LQ )LJXUH

DVVXPHV D FRPELQDWLRQ PDVWHU WDUJHW GHYLFH

Required Pins

 

 

 

Optional Pins

 

AD[31::00]

 

AD[63::32]

 

Address

 

 

 

 

& Data

C/BE[3::0]#

 

C/BE[7::4]#

64-Bit

 

PAR

 

PAR64

Extension

 

 

 

 

FRAME#

 

REQ64#

 

 

PCI

ACK64#

 

 

TRDY#

 

Interface

Interface

IRDY#

COMPLIANT

LOCK#

Control

STOP#

DEVICE

INTA#

Control

 

DEVSEL#

 

 

 

IDSEL

 

INTB#

Interrupts

 

 

INTC#

Error

PERR#

 

INTD#

 

 

 

 

Reporting

SERR#

 

 

 

Arbitration

REQ#

 

TDI

 

GNT#

 

 

(masters only)

 

TDO

 

 

 

JTAG

 

CLK

 

TCK

System

 

TMS

(IEEE 1149.1)

RST#

 

 

TRST#

 

 

 

 

 

)LJXUH 3&, 3LQ /LVW

1 The minimum number of pins for a planar-only device is 45 for a target-only and 47 for a master (PERR# and SERR# are optional for planar-only applications). Systems must support all signals defined for the connector. This includes individual REQ# and GNT# signals for each connector. The PRSNT[1::2]# pins are not device signals and, therefore, are not included in Figure 2-1, but are required to be connected on add-in cards.

7

Revision 2.2

2.1. Signal Type Definition

7KH IROORZLQJ VLJQDO W\SH GHILQLWLRQV DUH IURP WKH YLHZ SRLQW RI DOO GHYLFHV RWKHU WKDQ WKH DUELWHU RU FHQWUDO UHVRXUFH )RU WKH DUELWHU REQ# LV DQ LQSXW GNT# LV DQ RXWSXW DQG RWKHU 3&, VLJQDOV IRU WKH DUELWHU KDYH WKH VDPH GLUHFWLRQ DV D PDVWHU RU WDUJHW 7KH FHQWUDO UHVRXUFH LV D ³ORJLFDO´ GHYLFH ZKHUH DOO V\VWHP W\SH IXQFWLRQV DUH ORFDWHG UHIHU WR 6HFWLRQ IRU PRUH GHWDLOV

in

Input is a standard input-only signal.

out

Totem Pole Output is a standard active driver.

t/s

Tri-State is a bi-directional, tri-state input/output pin.

s/t/s

Sustained Tri-State is an active low tri-state signal owned and driven

 

by one and only one agent at a time. The agent that drives an s/t/s pin

 

low must drive it high for at least one clock before letting it float. A

 

new agent cannot start driving a s/t/s signal any sooner than one clock

 

after the previous owner tri-states it. A pullup is required to sustain

 

the inactive state until another agent drives it and must be provided by

 

the central resource.

o/d

Open Drain allows multiple devices to share as a wire-OR. A pull-up

 

is required to sustain the inactive state until another agent drives it and

 

must be provided by the central resource.

2.2. Pin Functional Groups

7KH 3&, SLQ GHILQLWLRQV DUH RUJDQL]HG LQ WKH IXQFWLRQDO JURXSV VKRZQ LQ )LJXUH $ V\PERO DW WKH HQG RI D VLJQDO QDPH LQGLFDWHV WKDW WKH DVVHUWHG VWDWH RFFXUV ZKHQ WKH VLJQDO LV DW D ORZ YROWDJH :KHQ WKH V\PERO LV DEVHQW WKH VLJQDO LV DVVHUWHG DW D KLJK YROWDJH 7KH VLJQDOLQJ PHWKRG XVHG RQ HDFK SLQ LV VKRZQ IROORZLQJ WKH VLJQDO QDPH

2.2.1. System Pins

CLK

in

Clock provides timing for all transactions on PCI and is an

 

 

input to every PCI device. All other PCI signals, except

 

 

RST#, INTA#, INTB#, INTC#, and INTD#, are sampled on

 

 

the rising edge of CLK and all other timing parameters are

 

 

defined with respect to this edge. PCI operates up to 33 MHz

 

 

(refer to Chapter 4) or 66 MHz (refer to Chapter 7) and, in

 

 

general, the minimum frequency is DC (0 Hz); however,

 

 

component-specific permissions are described in Chapter 4

 

 

(refer to Section 4.2.3.1.).

8

 

 

Revision 2.2

RST#

in

Reset is used to bring PCI-specific registers, sequencers, and

 

 

signals to a consistent state. What effect RST# has on a

 

 

device beyond the PCI sequencer is beyond the scope of this

 

 

specification, except for reset states of required PCI

 

 

configuration registers. A device that can wake the system

 

 

while in a powered down bus state has additional

 

 

requirements related to RST#. Refer to the PCI Power

 

 

Management Interface Specification for details. Anytime

 

 

RST# is asserted, all PCI output signals must be driven to

 

 

their benign state. In general, this means they must be

 

 

asynchronously tri-stated. REQ# and GNT# must both be tri-

 

 

stated (they cannot be driven low or high during reset). To

 

 

prevent AD, C/BE#, and PAR signals from floating during

 

 

reset, the central resource may drive these lines during reset

 

 

(bus parking) but only to a logic low level; they may not be

 

 

driven high. Refer to Section 3.8.1. for special requirements

 

 

for AD[63::32], C/BE[7::4]#, and PAR64 when they are

 

 

not connected (as in a 64-bit card installed in a 32-bit

 

 

connector).

 

 

RST# may be asynchronous to CLK when asserted or

 

 

deasserted. Although asynchronous, deassertion is guaranteed

 

 

to be a clean, bounce-free edge. Except for configuration

 

 

accesses, only devices that are required to boot the system

 

 

will respond after reset.

2.2.2. Address and Data Pins

AD[31::00] t/s

Address and Data are multiplexed on the same PCI pins. A

 

bus transaction consists of an address2 phase followed by one

 

or more data phases. PCI supports both read and write bursts.

 

The address phase is the first clock cycle in which FRAME#

 

is asserted. During the address phase, AD[31::00] contain a

 

physical address (32 bits). For I/O, this is a byte address; for

 

configuration and memory, it is a DWORD address. During

 

data phases, AD[07::00] contain the least significant byte

 

(lsb) and AD[31::24] contain the most significant byte (msb).

 

Write data is stable and valid when IRDY# is asserted; read

 

data is stable and valid when TRDY# is asserted. Data is

 

transferred during those clocks where both IRDY# and

 

TRDY# are asserted.

2 The DAC uses two address phases to transfer a 64-bit address.

9

 

 

Revision 2.2

C/BE[3::0]#

t/s

Bus Command and Byte Enables are multiplexed on the same

 

 

PCI pins. During the address phase of a transaction,

 

 

C/BE[3::0]# define the bus command (refer to Section 3.1.

 

 

for bus command definitions). During the data phase,

 

 

C/BE[3::0]# are used as Byte Enables. The Byte Enables are

 

 

valid for the entire data phase and determine which byte lanes

 

 

carry meaningful data. C/BE[0]# applies to byte 0 (lsb) and

 

 

C/BE[3]# applies to byte 3 (msb).

PAR

t/s

Parity is even3 parity across AD[31::00] and C/BE[3::0]#.

 

 

Parity generation is required by all PCI agents. PAR is stable

 

 

and valid one clock after each address phase. For data phases,

 

 

PAR is stable and valid one clock after either IRDY# is

 

 

asserted on a write transaction or TRDY# is asserted on a read

 

 

transaction. Once PAR is valid, it remains valid until one

 

 

clock after the completion of the current data phase. ( PAR

 

 

has the same timing as AD[31::00], but it is delayed by one

 

 

clock.) The master drives PAR for address and write data

 

 

phases; the target drives PAR for read data phases.

2.2.3. Interface Control Pins

FRAME#

s/t/s Cycle Frame is driven by the current master to indicate the

 

beginning and duration of an access. FRAME# is asserted to

 

indicate a bus transaction is beginning. While FRAME# is

 

asserted, data transfers continue. When FRAME# is

 

deasserted, the transaction is in the final data phase or has

 

completed.

IRDY#

s/t/s Initiator Ready indicates the initiating agent’s (bus master’s)

 

ability to complete the current data phase of the transaction.

 

IRDY# is used in conjunction with TRDY#. A data phase is

 

completed on any clock both IRDY# and TRDY# are

 

asserted. During a write, IRDY# indicates that valid data is

 

present on AD[31::00]. During a read, it indicates the master

 

is prepared to accept data. Wait cycles are inserted until both

 

IRDY# and TRDY# are asserted together.

TRDY#

s/t/s Target Ready indicates the target agent’s (selected device’s)

 

ability to complete the current data phase of the transaction.

 

TRDY# is used in conjunction with IRDY#. A data phase is

 

completed on any clock both TRDY# and IRDY# are

 

asserted. During a read, TRDY# indicates that valid data is

 

present on AD[31::00]. During a write, it indicates the target

 

is prepared to accept data. Wait cycles are inserted until both

 

IRDY# and TRDY# are asserted together.

STOP#

s/t/s Stop indicates the current target is requesting the master to

 

stop the current transaction.

3 The number of "1"s on AD[31::00], C/BE[3::0]#, and PAR equals an even number.

10

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]