- •Содержание
- •1. Введение
- •1.1. Цель дипломной работы
- •1.2. Динамически настраиваемый гироскоп
- •2. Проектно-конструкторская часть
- •2.1. Введение
- •2.2. Описание конструкции днг с гдо
- •Корпус прибора
- •Двигатель
- •Маховик (ротор и подвес)
- •Газодинамическая опора
- •Датчики момента
- •Датчики угла
- •Электрическая схема прибора кинд05-091
- •2.3. Проверка достоверности твердотельной модели
- •2.4. Заключение
- •3. Научно-исследовательская часть
- •3.1. Введение
- •3.2. Принцип работы динамически настраиваемого гироскопа, работающего в режиме датчика угловой скорости
- •3.3. Характеристики динамически настраиваемого гироскопа с газодинамической опорой ротора (кинд05-091)
- •3.4. Уравнения движения динамически настраиваемого гироскопа
- •3.5. Описание канала обратной связи
- •3.6. Механическая модель динамически настраиваемого гироскопа
- •Связь между системами координат
- •3.7. Вывод уравнений движения динамически настраиваемого гироскопа с учётом угловой податливости скоростной опоры.
- •Определение кинетической энергии системы
- •Определение обобщённых сил
- •Уравнения движения
- •3.8. Определение параметров математической модели
- •3.9. Расчёт жёсткости газодинамической опоры
- •3.10. Исследование полученной модели
- •3.11. Заключение
- •3.12. Список литературы
- •4. Организационно-экономическая часть
- •4.1. Введение
- •4.2. Расчёт трудоёмкости и календарных сроков нир
- •4.3. Определение себестоимости выполнения нир
- •Материалы
- •Комплектующие
- •Оплата труда
- •Затраты на оборудование:
- •Накладные расходы
- •Структура себестоимости нир
- •4.4. Заключение
- •4.5. Список литературы
- •5. Охрана труда и экология
- •5.1. Введение
- •5.2. Анализ опасных и вредных производственных факторов (овпф) при выполнении моделирования динамически настраиваемого гироскопа с газодинамической опорой ротора
- •Микроклимат
- •Освещение
- •Электромагнитные излучения
- •Электробезопасность
- •Пожарная безопасность
- •5.3. Проектирование эргономичного рабочего места программиста
- •5.4. Экологическая экспертиза дипломного проекта
- •Защита атмосферы
- •Защита гидросферы
- •Утилизация и ликвидация промышленных отходов
- •5.5. Заключение
- •5.6. Список литературы
- •6. Заключение
- •Приложение а
- •Приложение б
3.10. Исследование полученной модели
Исследуем влияние угловой жёсткости скоростной опоры на функционирование ДУС на ДНГ КИНД05-091 в среде Matlab Simulink. Для этого построим в Simulink полученную математическую модель и добавим к ней два канала обратной связи (приложение Б).
Теперь, используя модель, построенную в Simulink, проведём виртуальный эксперимент: предположим, что измерительная ось Х прибора направлена вертикально вверх, а ось Y – на север (рис. 3.10).

Рис. 3.10. Ориентация прибора относительно осей географического трёхгранника ξηζ
Тогда канал Х прибора измеряет вертикальную составляющую угловой скорости суточного вращения Земли, а канал Y – горизонтальную:
|
|
(33) |
где U – угловая скорость суточного вращения Земли, U ≈ 7,27·10-5 рад/с;
φ – географическая широта местности, φ ≈ 56° для Москвы.
При этом в обмотках датчиков момента должны протекать токи:
|
|
(34) |
|
Результаты моделирования представлены на графиках ниже.

Рис. 3.11. Изменение токов ОС

Рис. 3.12. Изменение углов наклона маховика относительно корпуса

Рис. 3.13. Изменение углов наклона вала относительно корпуса
Из графика, представленного на рис. 3.11, видно, что токи в обмотках датчиков момента в установившемся режиме принимают расчётные значения (34). Это говорит об адекватности построенной модели.
При этом маховик остаётся отклонённым относительно корпуса (рис. 3.12) на некоторую малую величину статической ошибки (порядка 10-4 дуг. мин.).
Из графика рис. 3.13 видно, что вал отклонён относительно корпуса (наклон порядка 2·10-6 дуг. мин.) и при этом совершает колебания.
Если ближе посмотреть на график углов наклона маховика относительно вала, можно увидеть его нутационные колебания (рис. 3.14).

Рис. 3.14. Нутационные колебания маховика
Параметры нутационных колебаний маховика:
|
|
(35) |
Частоту нутационных колебаний маховика можно рассчитать по формуле:
|
|
(36) |
Видим, что расчётное значение нутационной частоты совпадает с полученным при моделировании.
Если ближе посмотрим на график колебаний вала относительно корпуса, то увидим, что помимо колебаний на собственной частоте опоры присутствуют также биения на нутационной частоте привода (рис. 3.15).

Рис. 3.15. Колебания и биения вала относительно корпуса
Параметры колебаний и биений вала:
|
|
(37) |
Нутационную частоту привода можно оценить по формуле:
|
|
(38) |
Частота собственных колебаний в опоре рассчитывается:
|
|
(39) |
Расчётные
значения частот
и
почти
точно совпадают с полученными при
моделировании.
Сравнивая графики рис. 3.14 и рис. 3.15, стоит отметить, что диапазон изменения углов наклона маховика относительно вала на два порядка превышает диапазон изменения углов наклона вала относительно корпуса при заданной жёсткости скоростной опоры.
В конечном итоге, колебания вала относительно корпуса складываются из нутационных колебаний маховика относительно вала и колебаний вала относительно корпуса и выглядят, как представлено на графике рис. 3.16.

Рис. 3.16. Колебания вала относительно корпуса.
Датчики угла фиксируют углы наклона вала относительно корпуса и выдают соответствующие сигналы в каналы обратной связи. Сигналы, снимаемые из обмоток датчиков момента, (рис. 3.11) при ближайшем рассмотрении выглядят, как представлено на графике рис. 3.17 (на примере Iyx).

Рис. 3.17. Колебания выходного сигнала
Из графика рис. 3.17 видно, что в выходном сигнале присутствуют колебания на нутационной частоте маховика. Параметры этих колебаний:
|
|
(40) |
Коэффициент передачи нутационных колебаний через канал обратной связи равен:
|
|
(41) |
При действии на корпус прибора вибрации она через опору передаётся на маховик. Оценим действие вибрации на функционирование ДНГ.
Представим, что на вал вокруг оси X действует переменный возмущающий момент, вызванный наличием внешней вибрации. Этот момент вызывает колебания маховика относительно корпуса на частоте возмущения.
На амплитудно-частотной характеристике (АЧХ), представленной на рис. 3.18, по оси абсцисс в логарифмическом масштабе отложена частота возмущающего момента, приложенного к валу по оси Х, а по оси ординат – отношение угла наклона маховика относительно корпуса вокруг соответствующей оси к амплитуде возмущающего момента, выраженное в децибелах.
Таким образом, графики рис. 3.18 характеризуют реакцию прибора на возмущение, действующее по оси X: верхний – реакцию по углу α (наклон вокруг X), а нижний – реакцию по углу β (наклон вокруг Y). То есть верхний график характеризует реакцию по оси действия возмущения, нижний – по перпендикулярной ей оси.

Рис. 3.18. АЧХ прибора, характеризующая зависимость углов наклона маховика относительно корпуса от момента, приложенного к валу (при К2 = 600 Н∙м/рад)
Анализируя АЧХ рис. 3.18, можно выделить следующие характерные частоты:
–
(Гц)
–
частота нутационных колебаний маховика,
на ней возникает резонанс по оси,
перпендикулярной к оси действия
возмущения;
–
(Гц)
– собственная частота опоры, на ней
наблюдается антирезонанс;
–
(Гц),
(Гц)
– резонансные частоты, близкие к
собственной частоте опоры.
Интересным
является тот факт, что собственная
частота опоры
не является резонансной, а даже наоборот
– колебания на этой частоте, подавляются.
При этом резонанс проявляется на частотах
,
,
лежащих вблизи неё.
Как
отмечалось ранее, при работе ДНГ возникают
вибрации на частотах кратных частоте
вращения ротора. Наиболее ярко проявляются
колебания на двойной частоте собственного
вращения
Гц
[1].
Резонанс со второй гармоникой возможен при двух значениях угловой жёсткости скоростной опоры:
|
при
при
|
(42) |
Для предотвращения возникновения резонанса на двойной частоте вращения ротора при проектировании ДНГ нужно избегать подобных значений жёсткости скоростной опоры.

Рис. 3.19. АЧХ прибора, характеризующая зависимость углов наклона маховика относительно корпуса от момента, приложенного к валу (при К2 = 50,5 Н∙м/рад)
Сравнивая АЧХ рис. 3.18 и 3.19, можно заметить, что снижение угловой жёсткости опоры ведёт к поднятию АЧХ, а следовательно, к снижению виброустойчивости ДНГ. Поэтому при проектировании стоит стремиться получить как можно большее значение жёсткости скоростной опоры, тем более, что это ведёт к увеличению её несущей способности.





(дуг.
мин.)
(Гц)
(Гц)
(дуг.
мин.)
– размах биений
(Гц)
– частота биений (нутационная)
(Гц)
– частота колебаний (собственная)
(Гц)
(Гц)
(нА)
(Гц)
(мА/дуг.
мин.)
(Н∙м/рад),
(Гц)
(рис.3.19)
(Н∙м/рад),
(Гц)