- •4 Структурная классификация механизмов по Ассуру л.В.
- •8 Метод цикловых кинематических диаграмм (Кулачковые механизмы).
- •12 Классификация сил, действующих в механизмах.
- •15 Уравнение движения динамической модели в интегральной форме.
- •1. Жесткий удар. 2. Мягкий удар.
- •22 Прямая задача динамики машины: определение закона движения
- •Алгоритм решения прямой задачи динамики
- •23 Установившийся режим движения машины.
- •24 Алгоритм решения прямой задачи динамики при установившемся режиме движения машины.
- •25 Решение задачи регулирования хода машины по методу н.И.Мерцалова.
- •30 Оптимальный синтез рычажных механизмов.
- •32 Виброзащита в машинах и механизмах.
- •Динамическое гашение колебаний.
- •1. Уравновешивание вертикальной составляющей главного вектора сил инерции.
- •2. Уравновешивание горизонтальной составляющей главного вектора сил инерции.
- •Моментная неуравновешенность.
- •Динамическая неуравновешенность.
- •Аналитическое выражение для определения d1 следует из свойств треугольника p’a’d’:
- •41 Эвольвента окружности и ее свойства.
- •44 Толщина зуба колеса по окружности произвольного радиуса.
- •45 Станочное зацепление.
- •Виды зубчатых колес (Классификация по величине смещения).
- •46 Эвольвентное зацепление и его свойства.
- •Цилиндрическая эвольвентная зубчатая передача.
- •Цилиндрическая эвольвентная зубчатая передача.
- •Цилиндрическая эвольвентная зубчатая передача.
- •Цилиндрическая эвольвентная зубчатая передача.
- •51 Коэффициент торцевого перекрытия.
- •52 Качественные показатели цилиндрической эвольвентной передачи.
- •54 Конические зубчатые передачи.
- •55 Червячные зубчатые передачи.
- •60 Кинематическое исследование типовых планетарных механизмов графическим и аналитическим методами.
- •61 Подбор чисел зубьев по методу сомножителей.
- •62 Условия подбора чисел зубьев.
- •65 Кулачковые механизмы.
- •71 Трение в механизмах. Виды трения.
- •2. Вращательная кп
- •74 Волновые передачи. Назначение и области применения.
54 Конические зубчатые передачи.
Конической называется зубчатая передача, предназначенная для передачи и преобразования вращательного движения между звеньями, оси вращения которых пересекаются.

Схема конической передачи представлена на рис. 14.2. Оси колес зубчатой передачи пересекаются в точке 0. Угол между осями колес ( или между векторами угловых скоростей звеньев 1 и 2 ) называется межосевым углом. Этот угол может изменяться в пределах 0 < < 180. При = 0 передача превращается в цилиндрическую с внешним зацеплением, а при = 180 - в цилиндрическую с внутренним зацеплением. Таким образом, коническая передача является общим случаем зубчатой передачи, нежели цилиндрические. Начальные или аксоидные поверхности в конической передаче имеют форму конусов. Аксоидными называются поверхности, которые образуются осями мгновенного относительного вращения колес, в системах координат связанных с колесами ( звеньями передачи ). Если колеса передачи обработаны без смещения исходного контура, то аксоидные поверхности совпадают с делительными. При относительном движении аксоиды перекатываются друг по другу, при этом скольжение возможно только в направлении оси относительного вращения. Поэтому вектора угловых скоростей звеньев связаны между собой векторным уравнением 2 = 1 + 21 ,
002 001 0P
если известна величина 1 , то из этого уравнения можно определить 2 и 21.Из векторного треугольника a0b 1 / sin 1 = 2 / sin 2 1 /2 = sin 2 / sin 1 .
Передаточное отношение конической передачи u12 = 1/ 2 = sin 2 / sin 1 .Так как = 1 + 2 , 2= - 1 , то u12 = sin ( - 1) / sin 1 = (sin cos 1 - cos sin 1) / sin 1
u12 = (sin / tg1) - cos .Тогда углы начальных ( делительных при х=0 ) конусов 1 = arctg [ sin / ( u12 + cos )], 2= - 1 .
Геометрия зацепления в конической зубчатой передаче.
Как и в цилиндрических, так и в конических зубчатых передачах наиболее часто применяют эвольвентное зацепление. Эвольвентная поверхность зуба конического колеса образуется при перекатывании производящей плоскости по основному конусу. Эвольвентные кривые формируются на соосных сферических поверхностях с центром в вершине основного конуса. Поэтому для расчета геометрии эвольвентной конической передачи необходимо применять сферическую геометрию. При этом методе расчет геометрии проводится для эквивалентного цилиндрического зацепления двух секторов. Эти сектора образуются развертками конусов, которые построены на внешней сфере радиуса R we . Радиусы оснований этих конусов r we1 = r e1 и r we2 = r e2 , а образующие являются касательными к сфере (рис14.3). Числа зубьев колес эквивалентного цилиндрического зацепления рассчитываются на основании следующих формул rvte1 = rte1 / cos 1 , rvte2 = rte2 / cos 2 ,где rte1и rte2 - радиусы торцевых делительных окружностей на внешней сфере (рис 14.2), rvte1и rvte2- радиусы делительных окружностей эквивалентного цилиндрического зацепления. Так как rte1 = mte z1 , rte2 = mte z2 , и rvte1 = mte zvt1 , rvte2 = mte zvt2 ,то zvt1 = z1 / cos 1 , zvt2 = z2 / cos 2 , где z1 и z2 - числа зубьев колес конической передачи, zvt1 и zvt2 - числа зубьев колес эквивалентного цилиндрического расчетного зацепления ( эти величины могут быть дробными).
После определения чисел зубьев эквивалентного цилиндрического зацепления, приближенный расчет геометрических параметров для внешнего торца конического зацепления можно проводить по рассмотренным выше формулам цилиндрического эвольвентного зацепления. Радиус внешней сферы (длина образующей начального или делительного конуса) Rwe = rwe1 / sin 1 = rwe2 / sin 2 . Ширина зубчатого венца b = Rwe , где b = 0.3 ... 0.4 - коэффициент ширины зубчатого венца.
По форме линии зуба конические зубчатые передачи различаются на: прямозубые; косозубые; с круговым зубом; с эвольвентной линией зуба; с циклоидальной линией зуба.
Преимущества и недостатки кинических зубчатых передач.
Преимущества:
обеспечение возможности передачи и преобразования вращательного движения между звеньями с пересекающимися осями вращения;
возможность передачи движения между звеньями с переменным межосевым углом при широком диапазоне его изменения;
расширение компоновочных возможностей при разработке сложных зубчатых и комбинированных механизмов.
Недостатки:
более сложная технология изготовления и сборки конических зубчатых колес;
большие осевые и изгибные нагрузки на валы, особенно в связи с консольным расположением зубчатых колес.

