- •4 Структурная классификация механизмов по Ассуру л.В.
- •8 Метод цикловых кинематических диаграмм (Кулачковые механизмы).
- •12 Классификация сил, действующих в механизмах.
- •15 Уравнение движения динамической модели в интегральной форме.
- •1. Жесткий удар. 2. Мягкий удар.
- •22 Прямая задача динамики машины: определение закона движения
- •Алгоритм решения прямой задачи динамики
- •23 Установившийся режим движения машины.
- •24 Алгоритм решения прямой задачи динамики при установившемся режиме движения машины.
- •25 Решение задачи регулирования хода машины по методу н.И.Мерцалова.
- •30 Оптимальный синтез рычажных механизмов.
- •32 Виброзащита в машинах и механизмах.
- •Динамическое гашение колебаний.
- •1. Уравновешивание вертикальной составляющей главного вектора сил инерции.
- •2. Уравновешивание горизонтальной составляющей главного вектора сил инерции.
- •Моментная неуравновешенность.
- •Динамическая неуравновешенность.
- •Аналитическое выражение для определения d1 следует из свойств треугольника p’a’d’:
- •41 Эвольвента окружности и ее свойства.
- •44 Толщина зуба колеса по окружности произвольного радиуса.
- •45 Станочное зацепление.
- •Виды зубчатых колес (Классификация по величине смещения).
- •46 Эвольвентное зацепление и его свойства.
- •Цилиндрическая эвольвентная зубчатая передача.
- •Цилиндрическая эвольвентная зубчатая передача.
- •Цилиндрическая эвольвентная зубчатая передача.
- •Цилиндрическая эвольвентная зубчатая передача.
- •51 Коэффициент торцевого перекрытия.
- •52 Качественные показатели цилиндрической эвольвентной передачи.
- •54 Конические зубчатые передачи.
- •55 Червячные зубчатые передачи.
- •60 Кинематическое исследование типовых планетарных механизмов графическим и аналитическим методами.
- •61 Подбор чисел зубьев по методу сомножителей.
- •62 Условия подбора чисел зубьев.
- •65 Кулачковые механизмы.
- •71 Трение в механизмах. Виды трения.
- •2. Вращательная кп
- •74 Волновые передачи. Назначение и области применения.
Цилиндрическая эвольвентная зубчатая передача.
Два зубчатых колеса с одинаковым модулем и с числами зубьев соответствующими заданному передаточному отношению образуют зубчатую передачу или простейший зубчатый механизм. В этом трехзвенном механизме зубчатые колеса образуют между собой высшую пару, а со стойкой низшие пары. Зубчатая передача, кроме параметров образующих ее колес, имеет и собственные параметры: угол зацепления w, межосевое расстояние aw, воспринимаемое смещение ym и уравнительное смещение ym . Передаточное отношение механизма u12, числа зубьев колес z1 и z2, начальные окружности rw1 и rw2(или центроиды) и межосевое расстояние aw связаны между собой следующими соотношениями ( см. основную теорему зацепления и раздел по кинематике зубчатой передачи):
aw = rw1 + rw2 ; u12 = rw2 / rw1 ; aw = rw1 ( 1 + u12 ) ;
rw1=
aw
/(
1
+
u12);
rw2
=
rw1
-
aw
.
Межосевое расстояние aw
Из схемы эвольвентного зацепления (рис.12.12) можно записать
aw = rw1 + rw2 ,
но ry = r (cos / cos y ) и rw = r (cos / cos w ),
после подстановки, получим
aw = r1 (cos / cos w ) + r2 (cos / cos w ) ,
aw = ( mz1 /2 + mz2 / 2 ) (cos / cos w ) ,
aw = m (z1 + z2 ) (cos / cos w ) / 2 .
49
(см. рисунок отдельно)
Цилиндрическая эвольвентная зубчатая передача.
Два зубчатых колеса с одинаковым модулем и с числами зубьев соответствующими заданному передаточному отношению образуют зубчатую передачу или простейший зубчатый механизм. В этом трехзвенном механизме зубчатые колеса образуют между собой высшую пару, а со стойкой низшие пары. Зубчатая передача, кроме параметров образующих ее колес, имеет и собственные параметры: угол зацепления w, межосевое расстояние aw, воспринимаемое смещение ym и уравнительное смещение ym . Передаточное отношение механизма u12, числа зубьев колес z1 и z2, начальные окружности rw1 и rw2(или центроиды) и межосевое расстояние aw связаны между собой следующими соотношениями ( см. основную теорему зацепления и раздел по кинематике зубчатой передачи):
aw = rw1 + rw2 ; u12 = rw2 / rw1 ; aw = rw1 ( 1 + u12 ) ;
rw1= aw /( 1 + u12); rw2 = rw1 - aw .
Уравнительное смещение y m
Из рис. 12.12 aw = ra1 + c* m + rf2 ,
aw = r1 + r2 + y m ,
откуда ra1 + c* m + rf2 = r1 + r2 + y m ,
где ra1 = m ( z1 / 2 + h*a + x1 - y ), rf 2= m (z2 /2 - h*a - c* + x2 ) .
Подставим
эти выражения 

m
( z1
/ 2 + h*a
+ x1
- y
) + c*
m
+ m
(z2
/2 -
h*a
- c*
+ x2
) = (m
z1
/ 2)+ (m
z2
/2)
+ y
m
.
и, после преобразований, получим
x1 + x2 - y = y,
Коэффициент уравнительного смещения
y = ( x1 + x2 ) - y.
В 70 - е годы были разработаны и приняты ГОСТ на терминологию, прочностные и геометрические расчеты эвольвентных зубчатых передач. В ГОСТ предусмотрены два вида расчета геометрии:
по стандартному радиальному зазору в передаче(х*м);
по стандартной высоте зуба.
50
(см. рисунок отдельно)
