Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

755

.pdf
Скачиваний:
0
Добавлен:
15.11.2022
Размер:
4.07 Mб
Скачать

LTE physical layer

353

Total available uplink bandwidth

Slot #0

One

 

sub

 

frame

(1ms)

 

Slot #1

12 ‘subcarriers’

Uplink resources assigned for L1/L2 control signaling

Figure 16.35 Resource structure to be used for uplink L1/L2 control signaling in case of no simultaneous UL-SCH transmission.

If the mobile terminal has not been assigned an uplink resource for UL-SCH transmission, the L1/L2 control information (CQI, hybrid-ARQ acknowledgments, and scheduling requests) is instead transmitted in uplink resources specifically assigned for uplink L1/L2 control. As illustrated in Figure 16.35, these resources are located at the edges of the total available system bandwidth. Each such resource consists of 12 subcarriers (one resource block) within each slot of an uplink subframe. To provide frequency diversity, these frequency resources are frequency hopping on the slot boundary, that is one L1/L2 control resource consists of 12 subcarriers at the upper part of the spectrum within the first slot of a subframe and an equally sized resource at the lower part of the spectrum during the second slot of the subframe or vice versa. If more resources are needed for the uplink L1/L2 control signaling, for example, in case of very large overall transmission bandwidth supporting a large number of users, additional resources blocks can be assigned next to the previously assigned resource blocks.

The reasons for locating the resources for L1/L2 control at the edges of the overall available spectrum are twofold:

Together with the frequency hopping described above, this maximizes the frequency diversity experienced by the L1/L2 control signaling.

Assigning uplink resources for the L1/L2 control signaling at other positions within the spectrum, i.e. not at the edges, would have fragmented the uplink spectrum, making it impossible to assign very wide transmission bandwidths to a single mobile terminal and still retain the low-PAR single-carrier property of the uplink transmission.

16.3.5Uplink timing advance

The DFTS-OFDM-based LTE uplink transmission scheme allows for uplink intra-cell orthogonality, implying that uplink transmissions received from different mobile terminals do not cause interference to each other at the receiver. A fundamental requirement for this uplink orthogonality to hold is that the signals

354

3G Evolution: HSPA and LTE for Mobile Broadband

Base station

MT-1

(close to the base station)

MT-2

(far from the base station)

1 ms

Downlink transmission

Uplink reception from MT-1

Uplink reception from MT-2

TP,1

Downlink reception

Uplink transmission

TA,1

TP,2

Downlink reception

Uplink transmission

TA,2

Figure 16.36 Uplink timing advance.

transmitted from different mobile terminals within the same subframe but within different frequency resources arrive approximately time aligned at the base station or, more specifically, with a timing misalignment that is at most a fraction of the cyclic prefix. To ensure this, LTE includes a mechanism known as timing advance. In principle, this is the same as the uplink transmission timing control discussed for uplink OFDM in Chapter 4.

In essence, timing advance is a negative offset, at the mobile terminal, between the start of a received downlink subframe and a transmitted uplink subframe. By setting the offset appropriately for each mobile terminal, the network can control the timing of the signals received at the base station from the mobile terminals. In essence, mobile terminals far from the base station encounter a larger propagation delay and therefore need to start their uplink transmissions somewhat in advance, compared to mobile terminals closer to the base station, as illustrated in Figure 16.36. In this specific example, the first mobile terminal (MT-1) is located

LTE physical layer

355

close to the base station and experiences a small propagation delay, TP,1. Thus, for this mobile terminal, a small value of the timing advance offset TA,1 is sufficient to compensate for the propagation delay and to ensure the correct timing at the base station. On the other, a larger value of the timing advance is required for second mobile terminal (MT-2), which is located at a larger distance from the base station and thus experiencing a larger propagation delay.

The timing-advance value for each mobile terminal is determined by the network based on measurements on the respective uplink transmissions. Hence, as long as a mobile terminal carries out uplink data transmission, this can be used by the receiving base station to estimate the uplink receive timing and thus be a source for the timing-advance commands. Note that any uplink transmission can be used for the timing estimation. The network can, for example, exploit regular transmissions of channel-quality reports in the uplink for timing estimation in absence of data transmission from a specific mobile terminal. In this way, the mobile terminal can immediately restart uplink-orthogonal data transmission without the need for a timing re-alignment phase.

Based on the uplink measurements, the network determines the required timing correction for each terminal. If the timing of a specific terminal needs correction, the network issues a timing-advance command for this specific mobile terminal, instructing it to retard or advance its timing relative to the current uplink timing. Typically, timing-advance commands to a mobile terminal are transmitted relatively infrequent, e.g. one or a few times per second.

If the mobile terminal does not transmit anything in the uplink for a longer period, no uplink transmission should be carried out. In that case, uplink time alignment may be lost and restart of data transmission must then be preceded by an explicit timing-re-alignment phase using random access, as described in the next chapter, to restore the uplink time alignment.

17

LTE access procedures

The previous chapters have described the LTE uplink and downlink transmission schemes. However, prior to transmission of data, the mobile terminal needs to connect to the network. In this chapter, procedures necessary for a terminal to be able to access an LTE-based network will be described.

17.1Cell search

Cell search is the procedure by which the terminal finds a cell for potential connection to. As part of the cell-search procedure, the terminal obtains the identity of the cell and estimates the frame timing of the identified cell. Furthermore, the cell-search procedure also provides estimates of parameters essential for reception of system information on the broadcast channel, containing the remaining parameters required for accessing the system.

To avoid complicated cell planning, the number of physical layer cell identities should be sufficiently large. As mentioned in Chapter 16, LTE supports 510 different cell identities, divided into 170 cell-identity groups of three identities each.

In order to reduce the cell-search complexity, cell search for LTE is typically done in several steps, similarly to the three-step cell-search procedure of WCDMA. To assist the terminal in this procedure, LTE provides a primary synchronization signal and a secondary synchronization signal on the downlink. The primary and secondary synchronization signals are specific sequences, inserted into the last two OFDM symbols in the first slot of subframe zero and five as illustrated in Figure 17.1. In addition to the synchronization signals, the cell-search procedure may also exploit the reference signals as part of its operation.

17.1.1Cell-search procedure

In the first step of the cell-search procedure, the mobile terminal uses the primary synchronization signal to find the timing on a 5 ms basis. Note that the primary synchronization signal is transmitted twice in each frame. One reason is to simplify

357

358

 

 

 

 

 

 

 

 

 

 

 

3G Evolution: HSPA and LTE for Mobile Broadband

 

 

 

 

 

 

 

 

 

10 ms radio frame

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 ms subframe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#0

 

#1

 

#2

 

#3

 

#4

 

#5

 

 

 

 

#6

 

#7

#8

#9

 

 

0.5 ms slot

 

0.5 ms slot

 

 

 

 

 

 

0.5 ms slot

 

 

0.5 ms slot

 

 

 

 

0 1 2 3 4

5

6

0 1 2 3 4 5 6

0 1 2 3 4

5

6

0 1 2 3 4 5 6

 

 

 

 

 

 

 

 

OFDM symbol

Secondary Primary synchronization synchronization signal signal

72 subcarriers

 

System bandwidth

 

 

Figure 17.1 Primary and secondary synchronization signals (normal cyclic prefix length assumed).

handover from other radio-access technologies such as GSM to LTE. Thus, the primary synchronization signal can only provide the frame timing with a 5 ms ambiguity.

The implementation of the estimation algorithm is vendor specific, but one possibility is to do matched filtering between the received signal and the sequences specified for the primary synchronization signal. When the output of the matched filter reaches its maximum, the terminal is likely to have found timing on a 5 ms basis. The first step can also be used to lock the mobile-terminal local-oscillator frequency to the base-station carrier frequency. Locking the local-oscillator frequency to the base-station frequency relaxes the accuracy requirements on the mobile-terminal oscillator, with reduced cost as a consequence.

For reasons discussed below, three different sequences can be used as the primary synchronization signal. There is a one-to-one mapping between each of these three sequences and the cell identity within the cell-identity group. Therefore, after the first step, the terminal has found the identity within the cell-identity group. Furthermore, as there is a one-to-one mapping between each of the identities in a cell-identity group and each of the three orthogonal sequence used when creating the reference signal as described in Chapter 16, the terminal also obtains partial knowledge about the reference signal structure in this step. The cell identity group, however, remains unknown to the terminal after this step.

In the next step, the terminal detects the cell-identity group and determines the frame timing. This is done by observing pairs of slots where the secondary

LTE access procedures

359

synchronization signal is transmitted. Basically, if (s1, s2) is an allowable pair of sequences, where s1 and s2 represent the secondary synchronization signal in subframe zero and five, respectively, the reverse pair (s2, s1) is not a valid sequence pair. By exploiting this property, the terminal can resolve the 5 ms timing ambiguity resulting from the first step in the cell-search procedure and determine the frame timing. Furthermore, as each combination (s1, s2) represents one of the cellidentity groups, also the cell identity group is obtained from the second cell-search step. From the cell identity group, the terminal also obtains knowledge about which pseudo-random sequence is used for generating the reference signal in the cell.

Once the cell-search procedure is complete, the terminal receive the broadcasted system information to obtain the remaining parameters, for example, the transmission bandwidth used in the cell.

17.1.2 Time/frequency structure of synchronization signals

The general time-frequency structure has already been briefly described above and is illustrated in Figure 17.1. As seen in the figure, the primary and secondary synchronization signals are transmitted in two subsequent OFDM symbols. This structure has been chosen to allow for coherent processing of the secondary synchronization signal at the terminal. After the first step, the primary synchronization signal is known and can thus be used for channel estimation. This channel estimate can subsequently be used for coherent processing of the received signal prior to the second step in order to improve performance. However, the placement of the primary and secondary synchronization signals next to each other also implies that the terminal in the second step needs to blindly estimate the cyclic-prefix length. This, however, is a low-complexity operation.

In many cases, the timing in multiple cells is synchronized such that the frame start in neighboring cells coincides in time. One reason hereof is to enable MBSFN operation. However, the synchronous operation also implies that transmission of the primary synchronization signals in different cells occur at the same time. Channel estimation based on the primary synchronization signal will therefore reflect the composite channel from all cells if the same primary synchronization signal is used in all cells. Obviously, for coherent demodulation of the second synchronization signal, which is different in different cells, an estimate of the channel from the cell of interest is required, not an estimate of the composite channel from all cells. Therefore, LTE supports multiple sequences for the primary synchronization signal. In case of coherent reception in a deployment with time-synchronized cells, neighboring cells can use different primary synchronization sequences to alleviate the channel-estimation problem describe above. Furthermore, as described above, the primary synchronization signal also carries part of the cell identity.

360

 

3G Evolution: HSPA and LTE for Mobile Broadband

Synchronization signal,

0

Synchronization signal,

frequency-domain representation

 

time-domain representation

 

 

 

IFFT

36 Subcarriers

36 Subcarriers

 

 

 

DC

0

 

Figure 17.2 Generation of the synchronization signal in the frequency domain.

From a TDD perspective, locating the synchronization signal at the end of the first slot in the subframe, instead of the second slot, is beneficial as it implies fewer restrictions on the creation of guard times between uplink and downlink. Alternatively, if the synchronization signals were located in the last slot of the subframe, there would be no possibility to obtain the guard time required for TDD by removing downlink OFDM symbols as discussed in Chapter 16. Also, note that, for TDD operation, the location of the synchronization signals implies that subframe zero and five always are downlink subframes.

At the beginning of the cell-search procedure, the cell bandwidth is not necessarily known. In principle, detection of the transmission bandwidth could have been made part of the cell-search procedure. However, as this would complicate the overall cell-search procedure, it is preferable to maintain the same cell-search procedure, regardless of the overall cell transmission bandwidth. The terminal can then be informed about the actual bandwidth in the cell from the broadcast channel. Therefore, to maintain the same frequency-domain structure of the synchronization signals, regardless of the cell system bandwidth, the synchronization signals are always transmitted using the 72 center subcarriers, corresponding to a bandwidth in the order of 1 MHz. Figure 17.2 illustrates a possible implementation for generation of the synchronization signals. Thirty-six subcarriers on each side of the DC subcarrier in the frequency domain are reserved for the synchronization signal. By using an IFFT, the corresponding time-domain signal can be generated. The size of the IFFT, as well as the number of subcarriers set to zero in Figure 17.2, depends on the system bandwidth. Subcarriers not used for transmission of synchronization signals can be used for data transmission.

17.1.3Initial and neighbor-cell search

Finding a cell to connect to after power up of the terminal is obviously an important case. However, equally important is the possibility to identify candidate cells for handover as part of the mobility support, when the terminal connection is moved from one cell to another. These two situations are usually referred to as initial cell search and neighbor-cell search, respectively.

LTE access procedures

361

For initial cell search, the terminal does typically not know the carrier frequency of the cells it is searching for. To handle this case, the terminal needs to search for a suitable carrier frequency as well, basically by repeating the above procedure for any possible carrier frequency given by the frequency raster. Obviously, this may often increase the time required for cell search, but the search-time requirements for initial cell search are typically relatively relaxed. Implementation-specific methods can also be used to reduce the time from power-on until a cell is found. For example, the terminal can use any additional information the terminal may have and start searching on the same carrier frequency it last was connected to.

Neighbor-cell search, on the other hand, has stricter timing requirements. The slower the neighbor-cell search is, the longer it will take until the terminal is handed over to a cell with an in average better radio quality. This will obviously deteriorate the overall spectrum efficiency of the system. However, in the common case of intra-frequency handover, the terminal obviously does not need to search for the carrier frequency in the neighboring cell. Apart from omitting the search over multiple carrier frequencies, intra-frequency neighbor-cell search can use the same procedures as the initial cell search.

Measurements for handover purposes are required also when the terminal is receiving downlink data from the network. Hence, the terminal must be able to perform neighbor-cell search also in these cases. For intra-frequency neighbor-cell search, this is not a major problem as the neighboring candidate cells transmit at the same frequency as the terminal already is receiving data upon. Data reception and neighbor-cell search are simple separate baseband functions, operating on the same received signal.

The case of inter-frequency handover, however, is more complicated since data reception and neighbor-cell search need to be carried out at different frequencies. Equipping the terminal with a separate RF receiver circuitry for neighbor-cell search, although in principle possible, is not attractive from a complexity perspective. Therefore, gaps in the data transmission, during which the terminal can retune to a different frequency for inter-frequency measurement purposes, can be created. This is done in the same way as for HSPA, namely by avoiding scheduling the terminal in one or several downlink subframes.

17.2Random access

A fundamental requirement for any cellular system is the possibility for the terminal to request a connection setup. This is commonly known as random access and serves two main purposes in LTE, namely establishment of uplink

362

3G Evolution: HSPA and LTE for Mobile Broadband

 

 

 

 

 

 

 

 

 

 

 

 

UE

 

eNodeB

 

AGW

 

 

 

 

 

 

 

 

 

 

 

 

Synchronize to downlink timing (from cell search)

Step 1: Random access preamble

Step 2: Random access response

Adjust uplink timing

Step 3: RRC signaling

Only if UE is not known in NodeB

(initial random access)

 

Step 4: RRC signaling

 

user data

Figure 17.3 Overview of the random access procedure.

synchronization, and establishment of a unique terminal identity, the C-RNTI, known to both the network and the terminal. Thus, random access is used not only for initial access, that is, when moving from LTE_DETACHED or LTE_IDLE to LTE_ACTIVE (see Chapter 15 for a discussion of different terminal states), but also after periods of uplink inactivity when uplink synchronization is lost in LTE_ACTIVE.

The overall random-access procedure, illustrated in Figure 17.3, consists of four steps:

1.The first step consists of transmission of a random-access preamble, allowing the eNodeB to estimate the transmission timing of the terminal. Uplink synchronization is necessary as the terminal otherwise cannot transmit any uplink data.

2.The second step consists of the network transmitting a timing advance command to adjust the terminal transmit timing, based on the timing measurement in the first step. In addition to establishing uplink synchronization, the second step also assigns uplink resources to the terminal to be used in the third step in the random access procedure.

3.The third step consists of transmission of the mobile-terminal identity to the network using the UL-SCH similar to normal scheduled data. The exact content

LTE access procedures

363

of this signaling depends on the state of the terminal, in particular whether it is previously known to the network or not.

4.The fourth and final step consists of transmission of a contention-resolution message from the network to the terminal on the DL-SCH. This step also resolves any contention due to multiple terminals trying to access the system using the same random-access resource.

Only the first step uses physical-layer processing specifically designed for random access. The last three steps all utilizes the same physical-layer processing as used for normal uplink and downlink data transmission. In the following, each of these steps are described in more detail.

17.2.1Step 1: Random access preamble transmission

The first step in the random access procedure is the transmission of a randomaccess preamble. The main purpose of the preamble is to indicate to the network the presence of a random-access attempt and to obtain uplink time synchronization within a fraction of the uplink cyclic prefix.

In general, random-access-preamble transmissions can be either orthogonal or non-orthogonal to user data. In WCDMA, the preamble is non-orthogonal to the uplink data transmission. This provides the benefit of not having to semi-statically allocate any resources for random access. However, to control the random- access-to-data interference, the transmit power of the random-access preamble must be carefully controlled. In WCDMA, this is solved through the use of a power-ramping procedure, where the terminal gradually increases the power of the random-access preamble until it is successfully detected at the base station. Although this is a suitable solution to the interference problem, the ramping procedure introduces a delay in the overall random-access procedure. Therefore, from a delay perspective, a random-access procedure not requiring power ramping is beneficial.

In LTE, the transmission of the random-access preamble can be made orthogonal to uplink user-data transmissions and, as a consequence, no power ramping is necessary (although the specifications allow for ramping). Orthogonality between user data transmitted from other terminals and random-access attempts is obtained in both the time and frequency domains. The network broadcasts information to all terminals in which time-frequency resources random-access preamble transmission is allowed. To avoid interference between data and random-access preambles, the network avoids scheduling any uplink transmissions in those time-frequency resources. This is illustrated in Figure 17.4. Since the fundamental time unit for data transmission in LTE is 1 ms, a subframe is reserved for preamble

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]