
- •Предисловие ко 2-му изданию
- •Введение
- •Раздел 1. Основные принципы действия спутниковых систем определения местоположения
- •1.1. Особенности геодезических измерений спутниковыми методами
- •1.2. Двусторонний и односторонний методы дальномерных измерений
- •1.4. Общие принципы построения глобальных спутниковых систем позиционирования
- •1.5. Космический сектор
- •1.5.1. Краткие сведения о спутниках, входящих в состав систем позиционирования
- •1.5.2. Назначение и схемная реализация устанавливаемой на спутниках аппаратуры
- •1.5.3. Высокостабильные спутниковые опорные генераторы
- •1.5.4. Принципы формирования кодовых последовательностей
- •1.5.5. Содержание и формирование на спутнике навигационного сообщения
- •1.5.6. Методы объединения и формы передачи радиосигналов со спутника в аппаратуру потребителя
- •1.6. Сектор управления и контроля
- •1.6.1. Основные функции сектора
- •1.7. Сектор потребителя (приемно-вычислительный комплекс)
- •1.7.1. Функции геодезического приемно-вычислительного комплекса
- •1.7.2. Обобщенная структурная схема геодезического спутникового приемника
- •1.7.4. Селекция сигналов, поступающих от различных спутников
- •1.7.6. Принципы демодуляции принимаемых сигналов
- •1.7.7. Краткие сведения о работе системы управления GPS-приемника
- •Раздел 2. Методы измерений и вычислений, используемые в спутниковых системах определения местоположения
- •2.1. Абсолютные и относительные методы спутниковых измерений
- •2.2. Основные разновидности дифференциальных методов
- •2.4. Принцип измерения псевдодальностей и практическое использование данного метода
- •2.5. Упрощенный анализ фазовых соотношений при спутниковых дальномерных измерениях
- •2.6. Первые, вторые и третьи разности, базирующиеся на фазовых измерениях несущих колебаний
- •2.6.1. Первые разности
- •2.6.2. Вторые разности
- •2.7. Интегральный доплеровский счет
- •2.8. Принципы разрешения неоднозначностей при фазовых измерениях
- •2.8.1. Геометрический метод
- •2.8.3. Метод поиска наиболее вероятных значений целого числа циклов
- •2.8.4. Нетривиальные методы разрешения неоднозначности
- •2.9. Выявление пропусков фазовых циклов
- •2.10. Общая схема обработки наблюдаемых данных
- •Раздел 3. Системы координат и времени, используемые в спутниковых измерениях
- •3.1. Роль и значение координатно-временного обеспечения для спутниковых методов определения местоположения
- •3.1.2. Краткие сведения о системах отсчета времени, используемых в GPS и ГЛОНАСС
- •3.2. Координатные системы, характерные для GPS и ГЛОНАСС
- •3.2.1. Звездные системы координат
- •3.2.2. Геодезические системы координат и их преобразования
- •3.2.3. Переход к общеземной системе координат
- •3.2.4. Геоцентрическая координатная система ПЗ-90
- •3.2.5. Геоцентрическая координатная система WGS-84
- •3.3. Методы преобразования координатных систем для спутниковой GPS-технологии и параметры перехода
- •3.4. Особенности определения высот с помощью спутниковых систем
- •Раздел 4. Основные источники ошибок спутниковых измерений и методы ослабления их влияния
- •4.1. Классификация источников ошибок, характерных для спутниковых измерений
- •4.3. Учет влияния внешней среды на результаты спутниковых измерений
- •4.3.1. Влияние ионосферы
- •4.3.2. Влияние тропосферы
- •4.3.3. Многопутность
- •4.4. Инструментальные источники ошибок
- •4.4.1. Ошибки, обусловленные нестабильностью хода часов на спутнике и в приемнике
- •4.4.2. Ошибки, обусловленные неточностью знания точки относимости
- •4.5. Геометрический фактор
- •4.6. Причины и методы искусственного занижения точности GPS-измерений
- •Раздел 5. Проектирование, организация и предварительная обработка спутниковых измерений
- •5.1. Специфика проектирования и организации спутниковых измерений
- •5.2. Предполевое планирование в камеральных условиях
- •5.2.1. Составление технического проекта
- •5.4. Вхождение в рабочий режим и контроль за ходом измерений
- •5.5. Завершение сеанса наблюдений. Хранение собранной информации. Ведение полевого журнала
- •5.6. Специфика редуцирования результатов спутниковых измерений при внецентренной установке приемников
- •Раздел 6. Обработка спутниковых измерений, редуцирование и уравнивание геодезических сетей
- •6.1. Первичная обработка спутниковых измерений, производимая в приемнике
- •6.2. Предварительная обработка спутниковых измерений, производимая после окончания измерений
- •6.3. Окончательная обработка спутниковых измерений
- •6.3.1. Окончательная обработка спутниковых измерений по программе фирмы-изготовителя спутниковых приемников
- •6.3.2. Окончательная обработка спутниковых измерений по специально разработанной программе
- •6.4. Уравнивание геодезических сетей, созданных на основе использования спутниковой технологии
- •6.4.1. Уравнивание по программе фирмы-изготовителя спутниковых приемников
- •6.4.2. Уравнивание по специально разработанной программе
- •6.4.3. Уравнивание спутниковых измерений как сетей трилатерации
- •Раздел 7. Использование спутниковых технологий для построения геодезических сетей
- •7.1. Построение глобальной опорной геодезической сети
- •7.2. Построение континентальных опорных геодезических сетей
- •7.3. Построение государственной геодезической сети России на основе спутниковых технологий
- •7.3.1. Фундаментальная астрономо-геодезическая сеть (ФАГС)
- •7.3.2. Высокоточная геодезическая сеть (ВГС)
- •7.3.3. Спутниковая геодезическая сеть 1 класса (СГС-1)
- •7.4.3. О необходимости координации работ по созданию государственной и городских геодезических сетей
- •7.4.4. Разработка проекта «Инструкции по созданию и реконструкции городских геодезических сетей с использованием спутниковых систем ГЛОНАСС и GPS»
- •Раздел 8. Специальные применения спутниковых геодезических измерений для решения различных геодезических задач
- •8.1. Решение геодинамических задач
- •8.2. Применение спутниковых технологий в прикладной геодезии
- •8.4. Выполнение аэросъемочных работ с использованием спутниковых координатных определений
- •8.5. Использование спутниковых технологий при выполнении топографических и различных специализированных съемок
- •8.6. Особенности решения навигационных задач с использованием спутниковых приемников
- •8.6.1. Персональные навигационные системы
- •8.6.2. Навигационные системы транспортных средств
- •Заключение
- •Словарь англоязычных терминов
- •Список литературы
- •Содержание
существенно усложняет методику спутниковых измерений и сопряжен с большими материальными затратами. В этой связи повышенного внимания заслуживает другой подход, основанный на вычислении тропосферных задержек в процессе обработки спутниковых измерений, объявляя неизвестной величиной этот параметр в процессе совместного решения системы уравнений. Такой метод оказался достаточно эффективным при проведении измерений в условиях повышенной влажности воздуха. В этой связи он рекомендован международными организациями не только для коррекции результатов спутниковых измерений, но и для применения в метеорологии с целью составления тропосферных карт, на которых отображается пространственное распределение содержания водяных паров в атмосфере.
4.3.3. Многопутность
Применительно к спутниковым измерениям под многопутностью принято понимать такое распространение радиосигналов, при котором упомянутые сигналы достигают антенны спутникового приемника не только по прямому пути, соединяющему спутник с пунктом наблюдения, но и по ломаному пути, образующемуся за счет отражений от различного рода объектов, окружающих приемник (земная и водная поверхность, строения и сооружения, наружные геодезические сигналы др.). Такая ситуация, обусловливающая возникновение многопутности, схематически изображена на рис. 4.2.
От спутника
Приемник
Рис. 4.2. К пояснению влияния многопутности сигналов, попадающих на вход приемника
При наличии отраженных радиосигналов, прошедших несколько иной путь повышенной протяженности, в результаты радиодальномерных измерений вносится дополнительная погрешность, оказывающая влияние на конечную точность спутниковых измерений. Более того, многопутность может служить причиной существенного ослабления поступающих на вход приемника сигналов, а в отдель-
163
ных случаях приводить к полному нарушению нормальной работы приемника.
Особенности влияния отраженных радиосигналов на результаты дальномерных измерений достаточно подробно изучены в процессе разработки и исследования наземных радиодальномерных устройств. При этом было установлено существенное различие в механизме влияния отражений на несущие и модулирующие колебания. В связи с тем, что при спутниковых измерениях используются оба типа отмеченных колебаний, оценим это влияние применительно как к фазовым измерениям, базирующимся на использовании несущих колебаний, так и к кодовым измерениям, основанным на применении модулирующих сигналов.
Поскольку процесс влияния многопутности непосредственно на несущие колебания описывается намного проще и нагляднее, то рассмотрим механизм такого влияния на характерные для спутниковых измерений фазовые измерения, отнесенные к несущим колебаниям.
Предположим, что отраженный от того или иного объекта радиосигнал проходит избыточный путь Ар в результате чего он приобретает в сравнении с прямым сигналом дополнительный фазовый сдвиг АУ, который в долях фазового цикла может быть оценен на основе следующего очевидного соотношения:
(4.24) где/ — частота несущих колебаний; о - скорость распространения электромагнитных волн.
При наличии отражений на антенное устройство спутникового приемника одновременно поступают как прямой, так и отраженный радиосигналы, характеризуемые векторами Е и Еотр (рис. 4.3).
АФ
Е
с-реч
Рис. 4.3. Векторное сложение прямого и отраженного сигналов
При взаимодействии изображенных на рис. 4.3 сигналов формируется результирующий сигнал, который оказывается сдвинутым по фазе относительно прямого сигнала на величину АФ, оцениваемую соотношением:
164
) 1 + А:со8(АТ)
где к=Еотр/Епр - коэффициент ослабления отраженного сигнала при-
ближенно равный коэффициенту отражения отражающей поверхности. Анализ формулы (4.25) свидетельствует о том, что максимальная ошибка из-за многопутности при условии, что Еотр< Епр, наблюдается при противофазности этих сигналов, причем рассматриваемое взаимодействие сопровождается не только возникновением ошибки в результатах спутниковых измерений, но и ослаблением амплитуды результирующего сигнала, что может приводить к невозможности фиксации таких сигналов из-за их малой величины и, как следствие, к пропуску фазовых циклов при взятии последовательных отсчетов в процессе орбитального движе-
ния спутника.
Что касается количественной оценки фазовых искажений, то с учетом того, что в системах GPS и ГЛОНАСС длины волн несущих колебаний близки к 20 см, максимальная ошибка фазовых измерений может достигать значений около 5 см. В тех редких случаях, когда отраженный сигнал превышает прямой (например, при наличии дополнительного затухания на пути прохождения прямого сигнала), эта ошибка может приближаться к 10 см.
При выполнении псевдодальномерных (кодовых) измерений механизм расчета ошибок из-за многопутности существенно осложняется. Не прибегая к громоздкому математическому анализу, заметим: при подсчете интересующих нас погрешностей в результатах кодовых измерений происходит переход рассмотренных выше фазовых сдвигов, характерных для несущих колебаний, в фазовые сдвиги, которые приобретают модулирующие (т. е. кодовые) сигналы. При этом разность хода в несколько сантиметров, характерная для несущих колебаний, трансформируется в разность пройденных путей для модулирующих колебаний, оцениваемую десятками метров. Так, например, фазовый сдвиг на уровне около 90°, который приобретают сигналы, несущие в себе информацию об общедоступном С/А-коде и имеющие длину волны около 300 м, обусловливает ошибку, оцениваемую величиной около 75 м.
С учетом вышеизложенного повышенного внимания заслуживают меры по ослаблению влияния многопутности, прежде всего, на результаты кодовых измерений. При этом следует заметить, что за счет использования дифференциальных методов измерений не удается ослабить рассматриваемое влияние, так как обстановка, порождающая возникновение многопутности, характерна для каждого конкретного пункта наблюдений.
165