
- •1. Понятие об автоматическом управлении. Классификация сау.
- •1. Управление технологическим процессом. Регулирование.
- •1.1 Понятия управления и регулирования технологическим процессом
- •1.2 Объект регулирования
- •2. Дайте характеристику понятиям “управление” и “регулирование”.
- •3. Что такое объект регулирования и какие переменные характеризуют его состояние?
- •4. Назовите основные принципы регулирования и дайте их сравнительную оценку.
- •1.3 Основные принципы регулирования
- •Вопросы 5-7 общая часть:
- •5. Что такое линеаризация характеристики звена системы регулирования? в чем её польза? При выполнении каких условий она допустима?
- •6. Дифференциальное уравнение системы. Поясните суть стандартной формы дифференциального уравнения системы регулирования
- •7. Структурные схемы. Основные элементы структурных схем. Правила преобразования структурных схем.
- •1. Последовательное включение
- •8. Структурные схемы и передаточные функции многозвенных систем регулирования.
- •9. Передаточные функции сау. Передаточная функция динамического звена.
- •10. Перечислите основные виды типовых входных воздействий на систему регулирования.
- •11. Линеаризация системы автоматического управления.
- •12. Временные характеристики динамических звеньев сау.
- •13. Частотная передаточная функция и частотные характеристики. Частотные характеристики сау. Частотные характеристики динамического звена
- •14. Поясните и обоснуйте преимущества логарифмических частотных характеристик.
- •15. Типовые звенья сау. Статическое звено, Апериодическое звено первого и второго порядков, колебательное.
- •16. Типовые звенья сау. Дифференцирующие звенья (идеальное и реальное).
- •17. Типовые звенья сау. Интегрирующие звенья (идеальное и реальное).
- •18. Общий метод составления дифференциальных уравнений и передаточные функции систем автоматического управления.
- •19. Получение передаточной функции и частотных характеристик сау по передаточным функциям и частотным характеристикам её звеньев.
- •1) Последовательное соединение
- •2) Параллельное соединение
- •20. Устойчивость линейных сау. Понятие об устойчивости.
- •21. Что такое критерий устойчивости?
- •22. Критерии устойчивости. Критерий Гурвица и критерий Рауса.
- •Критерий устойчивости Гурвица
- •Уравнение пятого порядка
- •Критерий устойчивости Рауса
- •23. Критерии устойчивости критерий Найквиста.
- •Критерий устойчивости Найквиста
- •24. Критерии устойчивости критерий Михайлова.
- •Критерий устойчивости Михайлова
- •25. Статический режим систем автоматического управления. Понятие статического и стационарного режима. Статизм.
- •26. Статический режим систем автоматического управления. Способы устранения статического отклонения.
- •Переходные процессы в статических и астатических сар
- •Различие статических и астатических сар по отношению к задающим и возмущающим воздействиям
- •27. Методы оценки качества управления, показатели качества управления.
- •Прямые показатели качества переходных процессов системы автоматического управления
- •Прямые показатели качества переходных процессов сау по задающему воздействию
- •Корневые методы оценки качества управления
- •Частотные оценки качества процесса регулирования
- •Связь между прямыми и частотными оценками качества
- •28. Качество переходных процессов. Понятие качества переходных процессов. Использование переходной характеристики.
- •Прямые показатели качества переходных процессов системы автоматического управления
- •Прямые показатели качества переходных процессов сау по задающему воздействию
- •29. Построение областей устойчивости в плоскости параметров системы автоматического управления. D–разбиение. Выделение областей устойчивости
- •Построение областей устойчивости в плоскости параметров системы автоматического управления. D–разбиение.
- •Понятие о d–разбиении
- •30. Синтез линейных систем автоматического регулироования, Желаемые лачх системы автоматического управления. Желаемые лачх системы автоматического управления
- •Синтез линейных систем автоматического регулирования
- •Этапы синтеза:
- •31. Синтез методом логарифмических частотных характеристик. Лачх и лфчх тдз и систем (метод Солодовникова).
- •Этапы синтеза:
- •Синтез методом логарифмических частотных характеристик. Лачх и лфчх тдз и систем.
- •32. Качество переходных процессов. Частотные оценки качества процесса регулирования.
- •Прямые показатели качества переходных процессов системы автоматического управления
- •Частотные оценки качества процесса регулирования
- •Связь между прямыми и частотными оценками качества
- •33. Коррекция динамических свойств сау. Последовательные корректирующие звенья.
- •Последовательные корректирующие устройства
- •Введение в закон регулирования интеграла.
- •34. Коррекция динамических свойств сау. Жёсткие обратные связи.
- •Параллельные корректирующие устройства
- •Обратные связи
- •Достоинства параллельных корректирующих устройств:
- •Недостатки параллельных корректирующих устройств:
- •35. Коррекция динамических свойств сау. Гибкие обратные связи.
- •Параллельные корректирующие устройства
- •Обратные связи
- •Гибкие обратные связи и их влияние на динамические свойства системы
- •Достоинства параллельных корректирующих устройств:
- •Недостатки параллельных корректирующих устройств:
- •36. Сопоставьте достоинства и недостатки типовых п-, и- и пи-регуляторов. Типовые регуляторы
- •Пропорциональный (п-) регулятор.
- •Интегральный (и-) регулятор.
- •Пропорционально-интегральный (пи-) регулятор.
- •37. Что такое стандартные настройки регуляторов? Стандартные настройки
- •38. Как, пользуясь правилами стандартных настроек, выбрать параметры пи-регулятора?
- •39. Какие элементы системы автоматического регулирования могут выбираться при синтезе?
- •Этапы синтеза:
- •40. В каком порядке осуществляется выбор корректирующих устройств методом лчх?
9. Передаточные функции сау. Передаточная функция динамического звена.
Передаточная функция
Важной, очень удобной в практических приложениях характеристикой, компактно описывающей динамические свойства звена (или системы), является передаточная функция звена (или системы), определяемая как отношение изображений выходной переменной ко входной , взятое при нулевых начальных условиях:
В частности, для системы регулирования, описываемой уравнением (2.3), можно записать выражение для изображения выходной переменной:
Здесь
и
– передаточные функции системы регулирования по каналам «входной сигнал – выходная переменная » и «возмущение – выходная переменная ». Напомним, что уравнения (2.1) и (2.2) адекватны только при нулевых начальных условиях.
Динамическое звено САУ
Для математического описания работы САУ удобно разбивать её не на функциональные элементы автоматики, а на динамические звенья. Поэтому вводится понятие динамического звена. Динамическим звеном называется часть системы управления, либо вся система, описываемая дифференциальным (или иным) уравнением определенного вида. Приведённое определение является общим. Под него подходит любой элемент автоматики, совокупность таких элементов и даже вся система автоматического управления в целом.
Передаточные функции САУ
Передаточная функция динамического звена
Понятие передаточной функции динамического звена связано с операционным методом решения дифференциальных уравнений, основанном на применении преобразования Лапласа-Карсона. Преобразованием Лапласа называют соотношение:
(3.1)
где x(t) – оригинал; X(p) – изображение, ставящее функции x(t) вещественного переменного t в соответствие функцию X(p) комплексной переменной p (p = σ + jω).
Преобразование Карсона имеет вид:
.
(3.2)
Обратное преобразование Лапласа:
(3.3)
Теорема смещения:
(3.4)
Связь конечного значения функции с изображением:
(3.5)
Изображение производных функций:
Рассмотрим пример. Пусть динамическое звено (рис 3.1) описывается дифференциальным уравнением:
=
(3.7)
Рис. 3.1. Динамическое звено
Найдём изображение Лапласа уравнения (3.7). Для этого последовательно определим изображения левой и правой частей уравнения (3.7):
(3.8)
С учётом (3.8) изображение уравнения (3.7) при нулевых начальных условиях принимает вид:
(3.9)
Тогда отношение изображения выходной координаты к изображению входной координаты рассматриваемого звена при нулевых начальных условиях примет вид:
.
(3.10)
В общем виде передаточная функция динамического звена запишется:
.
(3.11)
Таким образом, передаточная функция динамического звена есть отношение изображения (Лапласа-Карсона) выходной координаты звена к соответствующему изображению входной координаты звена при нулевых начальных условиях.
При этом изображение выходной координаты
динамического звена (рис. 3.2) равно
где
– передаточная функция динамического
звена, а
– изображение входного воздействия.
Рис. 3.2. Динамическое звено