
- •1. Понятие об автоматическом управлении. Классификация сау.
- •1. Управление технологическим процессом. Регулирование.
- •1.1 Понятия управления и регулирования технологическим процессом
- •1.2 Объект регулирования
- •2. Дайте характеристику понятиям “управление” и “регулирование”.
- •3. Что такое объект регулирования и какие переменные характеризуют его состояние?
- •4. Назовите основные принципы регулирования и дайте их сравнительную оценку.
- •1.3 Основные принципы регулирования
- •Вопросы 5-7 общая часть:
- •5. Что такое линеаризация характеристики звена системы регулирования? в чем её польза? При выполнении каких условий она допустима?
- •6. Дифференциальное уравнение системы. Поясните суть стандартной формы дифференциального уравнения системы регулирования
- •7. Структурные схемы. Основные элементы структурных схем. Правила преобразования структурных схем.
- •1. Последовательное включение
- •8. Структурные схемы и передаточные функции многозвенных систем регулирования.
- •9. Передаточные функции сау. Передаточная функция динамического звена.
- •10. Перечислите основные виды типовых входных воздействий на систему регулирования.
- •11. Линеаризация системы автоматического управления.
- •12. Временные характеристики динамических звеньев сау.
- •13. Частотная передаточная функция и частотные характеристики. Частотные характеристики сау. Частотные характеристики динамического звена
- •14. Поясните и обоснуйте преимущества логарифмических частотных характеристик.
- •15. Типовые звенья сау. Статическое звено, Апериодическое звено первого и второго порядков, колебательное.
- •16. Типовые звенья сау. Дифференцирующие звенья (идеальное и реальное).
- •17. Типовые звенья сау. Интегрирующие звенья (идеальное и реальное).
- •18. Общий метод составления дифференциальных уравнений и передаточные функции систем автоматического управления.
- •19. Получение передаточной функции и частотных характеристик сау по передаточным функциям и частотным характеристикам её звеньев.
- •1) Последовательное соединение
- •2) Параллельное соединение
- •20. Устойчивость линейных сау. Понятие об устойчивости.
- •21. Что такое критерий устойчивости?
- •22. Критерии устойчивости. Критерий Гурвица и критерий Рауса.
- •Критерий устойчивости Гурвица
- •Уравнение пятого порядка
- •Критерий устойчивости Рауса
- •23. Критерии устойчивости критерий Найквиста.
- •Критерий устойчивости Найквиста
- •24. Критерии устойчивости критерий Михайлова.
- •Критерий устойчивости Михайлова
- •25. Статический режим систем автоматического управления. Понятие статического и стационарного режима. Статизм.
- •26. Статический режим систем автоматического управления. Способы устранения статического отклонения.
- •Переходные процессы в статических и астатических сар
- •Различие статических и астатических сар по отношению к задающим и возмущающим воздействиям
- •27. Методы оценки качества управления, показатели качества управления.
- •Прямые показатели качества переходных процессов системы автоматического управления
- •Прямые показатели качества переходных процессов сау по задающему воздействию
- •Корневые методы оценки качества управления
- •Частотные оценки качества процесса регулирования
- •Связь между прямыми и частотными оценками качества
- •28. Качество переходных процессов. Понятие качества переходных процессов. Использование переходной характеристики.
- •Прямые показатели качества переходных процессов системы автоматического управления
- •Прямые показатели качества переходных процессов сау по задающему воздействию
- •29. Построение областей устойчивости в плоскости параметров системы автоматического управления. D–разбиение. Выделение областей устойчивости
- •Построение областей устойчивости в плоскости параметров системы автоматического управления. D–разбиение.
- •Понятие о d–разбиении
- •30. Синтез линейных систем автоматического регулироования, Желаемые лачх системы автоматического управления. Желаемые лачх системы автоматического управления
- •Синтез линейных систем автоматического регулирования
- •Этапы синтеза:
- •31. Синтез методом логарифмических частотных характеристик. Лачх и лфчх тдз и систем (метод Солодовникова).
- •Этапы синтеза:
- •Синтез методом логарифмических частотных характеристик. Лачх и лфчх тдз и систем.
- •32. Качество переходных процессов. Частотные оценки качества процесса регулирования.
- •Прямые показатели качества переходных процессов системы автоматического управления
- •Частотные оценки качества процесса регулирования
- •Связь между прямыми и частотными оценками качества
- •33. Коррекция динамических свойств сау. Последовательные корректирующие звенья.
- •Последовательные корректирующие устройства
- •Введение в закон регулирования интеграла.
- •34. Коррекция динамических свойств сау. Жёсткие обратные связи.
- •Параллельные корректирующие устройства
- •Обратные связи
- •Достоинства параллельных корректирующих устройств:
- •Недостатки параллельных корректирующих устройств:
- •35. Коррекция динамических свойств сау. Гибкие обратные связи.
- •Параллельные корректирующие устройства
- •Обратные связи
- •Гибкие обратные связи и их влияние на динамические свойства системы
- •Достоинства параллельных корректирующих устройств:
- •Недостатки параллельных корректирующих устройств:
- •36. Сопоставьте достоинства и недостатки типовых п-, и- и пи-регуляторов. Типовые регуляторы
- •Пропорциональный (п-) регулятор.
- •Интегральный (и-) регулятор.
- •Пропорционально-интегральный (пи-) регулятор.
- •37. Что такое стандартные настройки регуляторов? Стандартные настройки
- •38. Как, пользуясь правилами стандартных настроек, выбрать параметры пи-регулятора?
- •39. Какие элементы системы автоматического регулирования могут выбираться при синтезе?
- •Этапы синтеза:
- •40. В каком порядке осуществляется выбор корректирующих устройств методом лчх?
Частотные оценки качества процесса регулирования
Частотные оценки производятся по
частотным характеристикам как замкнутой,
так и разомкнутой системы регулирования.
Когда пользуются частотной характеристикой
замкнутой системы, то обычно оценивают
величины: показатель колебательности
,
резонансную (собственную) частоту
и
полосу пропускания
(рис. 10.1).
Показатель колебательности
– это отношение максимального значения
амплитудной частотной характеристики
замкнутой системы к её значению
при
.
Чем выше
,
тем более склонна к колебаниям система
регулирования. Практикой установлено,
что для системы, обладающей удовлетворительным
качеством процессов,
.
Рис. 10.1. АЧХ замкнутой системы регулирования
Резонансная частота – это частота, при которой гармонические колебания проходят через систему с наибольшим усилением, а амплитудная частотная характеристика имеет максимум .
Полоса пропускания частот
– это диапазон частот, где амплитудная
частотная характеристика проходит не
ниже значения
.
Величины M,
и
можно определить, если построить
уточненные (с учетом поправок) амплитудные
частотные характеристики замкнутой
системы в районе частоты среза
.
По амплитудным частотным характеристикам разомкнутой системы определяют следующие оценки (рис. 10.2): частоту среза , запасы устойчивости по фазе γ и по амплитуде (по модулю). Наиболее широко пользуются логарифмическими частотными характеристиками, построение которых требует минимальных затрат, но вместе с тем дает наиболее ясную связь со структурой и параметрами корректирующих связей.
Частота среза – это частота, при которой значение амплитудной характеристики разомкнутой системы равно единице (а ЛАЧХ разомкнутой системы пересекает ось частот). Величина косвенно связана с быстродействием системы: чем выше , тем выше быстродействие.
Степень демпфирования процессов или, наоборот, склонность системы к колебаниям характеризуют запасы устойчивости. Запас устойчивости по фазе принимают обычно в пределах 30...60 градусов, а по амплитуде – от 3 до 10 децилог.
Рассмотренные нами примеры оценок качества процессов регулирования далеко не исчерпывают весь существующий перечень, что обусловлено большим разнообразием, а порой противоречивостью технических требований к конкретным системам.
Рис. 10.2. Логарифмические амплитудные (кривые 1 и 3) и фазовая
(кривая 2) частотные характеристики разомкнутой системы регулирования
Устойчива или неустойчива система, определяют обычно по частотным характеристикам разомкнутой системы. В самом простом, но и наиболее распространённом случае обе логарифмические характеристики – и амплитудная и фазовая – имеют монотонно снижающийся характер (рис. 10.2). Этому случаю может соответствовать, например, одноконтурная система регулирования, образованная последовательным соединением только инерционных звеньев.
При оценке устойчивости обращается внимание на взаимное расположение амплитудной и фазовой характеристик в районе частоты среза – частоты, при которой модуль амплитудной частотной характеристики разомкнутой системы равен единице.
Критерий устойчивости формулируется
следующим образом: если в разомкнутой
системе регулирования при частоте среза
фазовая частотная характеристика не
опускается ниже уровня
,
то замкнутая система устойчива. Если
при
фазовая
частотная характеристика опускается
ниже уровня
,
то замкнутая система неустойчива.
На рис. 10.2 кривые 1 и 2 соответствуют устойчивой системе. Простым увеличением коэффициента усиления разомкнутой системы можно поднять амплитудную характеристику и увеличить , не изменяя фазовой частотной характеристики. Пара кривых 3 и 2 соответствует неустойчивой системе.
Вводится понятие запасов устойчивости. Запас устойчивости по фазе
измеряют разницей между уровнем
и значением фазовой характеристики
при частоте среза (см. рис. 10.2). Запас
устойчивости по амплитуде измеряется
тем, насколько ЛАЧХ разомкнутой системы
в точке с частотой, где фазовая
характеристика
,
лежит ниже горизонтальной оси, то есть
(см. рис. 10.2):
.
Чем больше на графиках расстояния
и
тем
больше запас устойчивости в системе
регулирования. В хорошо демпфированных
промышленных системах регулирования
считают достаточным запас по фазе в
пределах от 30 до 60 градусов, а по амплитуде
– от 3 до 10 длог (от 6 до 20 дб). Столь широкий
рекомендуемый диапазон определяется
большим разнообразием требований к
точности ведения технологического
процесса для различных рабочих механизмов.