
- •Введение
- •1. Загрязняющие вещества: понятие и классификация
- •Источники разброса результатов при биотестировании
- •2. Загрязнение гидросферы
- •Запасы воды в гидросфере Земли
- •Средний ионный состав (в %) морской и пресной воды
- •Средний состав (в %) озерных вод
- •Потребление воды на одного человека
- •Страны, испытывающие нехватку водных ресурсов
- •Время разложения компонентов бытового мусора в морской воде (Frid, 2002)
- •Загрязнение вод различными отраслями промышленности
- •2.1. Загрязнение бытовыми сточными водами
- •Загрязненность органикой промышленных сточных вод в эквивалентах бытовых стоков
- •2.2. Токсиканты в водных экосистемах
- •2.2.1. Загрязнение углеводородами
- •Основные источники поступления нефти в океан (Сытник, 1987)
- •Поступление нефтяных углеводородов в морскую среду (Мт·год-1) (Segar, 1998)
- •Среднее содержание основных классов углеводородов и их производных (%) в нефти и бензине из различных месторождений (Израэль, 1989)
- •2.2.2. Полициклические ароматические соединения
- •Средние уровни загрязнения морской среды бенз(а)пиреном, мкг·л–1
- •2.2.3. Загрязнение вод металлами
- •Естественное и антропогенное загрязнение Мирового океана, т·год-1
- •Степень токсичности ряда солей тяжелых металлов для некоторых водных животных
- •Примеры соединений ртути
- •2.2.4. Синтетические органические вещества
- •Оценка распределения пхб в окружающей среде в глобальном масштабе (пересчитано на 2000 г. По Израэль, 1989)
- •Биологическое концентрирование ддт в пресноводных экосистемах (Jørgensen, 1992)
- •Средняя концентрация в морской воде и гидробионтах (мкг кг-1) хлорированных углеводородов в Тихом океане (Израэль, 1989)
- •Концентрации ддт (мг кг–1 сх. В.) (Jørgensen, 1992)
- •2.2.5. Синтетические поверхностно-активные вещества
- •Содержание в воде детергентов, приводящее к 50 %-ной смертности через 48 ч среди типичных морских беспозвоночных, мг/л (Сытник, 1989)
- •3. Загрязнение атмосферы
- •3.1. Состав атмосферы
- •Состав воздуха в приземном слое
- •3.2. Первичное загрязнение
- •Содержание серы в топливах (Андруз, 1999)
- •3.3. Вторичное загрязнение
- •Концентрация загрязнителей в фотохимическом смоге (Браун, 1983)
- •3.4. Источники загрязнения атмосферы
- •Масса загрязняющих веществ, выбрасываемых в атмосферу (тонн/год, по данным юнеско, 1996)
- •Выбросы в атмосферу главных загрязнителей в мире (1990 г.) и в России (1991 г.)
- •3.5. Кислотные дожди
- •3.6. Парниковые газы в атмосфере
- •Вклад парниковых газов в изменение радиационного баланса, % (Андруз, 1999)
- •Наблюдаемые тренды концентрации основных парниковых газов в атмосфере (Кондратьев, 1999)
- •3.7. Выбросы серы и их влияние на климат
- •4. Загрязнение литосферы
- •Химический состав земной коры на глубинах 10 - 20 км
- •Классификация природных вод (почвенных растворов) в зависимости от их минерализованности
- •4.1. Загрязнение почв пестицидами
- •3.2 Удобрения.
- •5. Радиационное загрязнение
- •Основные радиоактивные изотопы, имеющие значение для экологии (Рамад, 1981)
- •Среднее содержание 90Sr и 137Cs (Бк/кг сухой массы) в культивируемых растениях
- •Распространение 40k в окружающей среде
- •Концентрации радиоактивных изотопов (Бк/кг) в горных породах
- •Радиоактивность строительных материалов
- •Серия распада 238u до 222Rn
- •Серия распада 222Rn до 206Pb
- •Скорость эксгаляции радона
- •Концентрация радона в приземном слое
- •Источники радиации по радону в типичном жилом доме
- •Средние значения концентраций радона в разных помещениях для средних широт северного полушария
- •6. Стандарты качества окружающей среды
- •6.1. Нормирование атмосферных загрязнений
- •6.2. Нормирование загрязняющих веществ в водных объектах
- •6.3. Нормирование содержания вредных веществ в почве
- •Заключение
- •Библиографический список
- •Оглавление
- •394026 Воронеж, Московский просп., 14
Распространение 40k в окружающей среде
Источник |
Бк/кг |
Морская вода Почвы Известняк Гранит Базальт Изверженные породы Глинистые сланцы Песчаники Апатиты Фосфатиты Фосфатно-калийные удобрения Азотно-фосфорно-калийные удобрения |
12–15 37–1100 30–40 925–1200 290–400 814–925 85–850 300–400 44–170 230 5900 1200–5900 |
Таблица 39
Концентрации радиоактивных изотопов (Бк/кг) в горных породах
Тип породы |
238U |
226Ra |
232Th |
Граниты Диориты Базальты Дюриты Сланцы Алюминиевые сланцы Известняки Песчаники |
59 31 11 0,4 44 – 26 18 |
96–114 – 18,5 – 14,8 2220 14,8–25,9 11,1–25,9 |
81,4 32,5 11,1 24,4 44,4 – 7,0–7,7 11,1 |
Таблица 40
Радиоактивность строительных материалов
Строительный материал |
Радиоактивность, Бк/кг3 |
Дерево Природный гипс Песок и гравий Портландцемент Кирпич Гранит Зольная пыль Глинозем Фосфогипс Кальцийсиликатный шлак Отходы урановых обогатительных предприятий |
1,1 29 34 45 126 170 341 1367 574 2140 4625
|
Надо отметить, что опасность ионизирующей радиации для живых существ зачастую преувеличивается. Во-первых, она имеет пороговый уровень, ниже которого воздействие радиации на организмы не является вредным. Во-вторых, малые дозы радиации могут быть полезными (так называемый «эффект хормезиса»).
Так, исследования воздействия малых доз радиации на животных показали, что продолжительность жизни облученных мышей, крыс, собак оказалась дольше, они были более здоровыми и приносили более многочисленное потомство, чем животные, не подвергавшиеся облучению (Кондратьев, 1999). Сходные данные получены и для человека (Кузин, 1991). При малых дозах гамма излучения и быстрых нейтронов наблюдалось усиление роста водорослей, увеличение продолжительности жизни мышей и морских свинок. Хормезис проявляется в стимулировании восстановления ДНК, синтезе белков, образовании антистрессорных белков, обезвреживании свободных радикалов, стимулировании иммунной системы. У млекопитающих обнаружено усиление защитных реакций по отношению к опухолевым и инфекционным заболеваниям, в частности, лейкемией, раком и саркомой (Кондратьев, 1999).
В сельском хозяйстве, например, ионизирующие излучения используются для повышения всхожести семян, ускорения развития и повышения урожая растений, лучшей прививаемости черенков, повышения яйценоскости кур, стимуляции оплодотворяемости и выхода мальков в рыбоводстве (Кузин, 1981).
При обследовании жертв атомных бомбардировок Хиросимы и Нагасаки выяснилось, что у людей, подвергшихся облучению на уровне 100 мЗв (1 мЗв эквивалентен разрушению одной молекулы ДНК в одной клетке тела человека; природно-обусловленное разрушение ДНК имеет скорость порядка 70 млн. в год), смертность от лейкемии была меньше, чем у контрольной группы. В Норвегии природный радиоактивный фон обеспечивает среднюю дозу облучения людей за время жизни 365 мЗв, в некоторых местностях – до 1500 мЗв, в Индии и Иране есть районы, где эта доза возрастает до 2000 и 3000 мЗв, соответственно (Кондратьев, 1999). В России пороговым уровнем считается 70 мЗв (до 1991 г. был принят уровень 50 мЗв).
Многие курорты (например, в горах Швейцарии, Кавказа, Памира, Колорадо), наряду с благоприятными климатическими факторами, как правило, включают и фактор повышенного природного радиоактивного фона. Всемирно известные курорты Браубах, Висбаден, Баден-Баден (Германия), Бадгастайн (Австрия), Масутами-Спрингс (Япония), Цхалтубо, Пятигорск, Белокуриха и многие другие возникли вокруг источников с повышенным содержанием радона.
Радон. Наибольшая доля природного радиоактивного фона (около 50 %) образуется радоном, являющимся естественным продуктом распада 238U и 232Th. Вклад в радиоактивный фон радона-222 из уранового ряда в 20 раз больше, чем вклад радона-220 из ториевого ряда. Некоторые местности достаточно богаты естественным ураном. Например, в Девоне и Корнуэлле местные граниты содержат до 2000 г/т урана. Уран распадается достаточно сложным путем (табл. 41, 42) и на одном из этапов образует радон.
Таблица 41