Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Методическое пособие 679

.pdf
Скачиваний:
5
Добавлен:
30.04.2022
Размер:
4.03 Mб
Скачать

Рис. 2.8. Сканирующий микроскоп «Jеol jsm-6380LV»

4) исследование макроструктуры бетона осуществлялось с помощью микроскопа Биолам ЛОМО Д1, совмещенного с цифровым фотоаппаратом Nikon D3000. Микроскоп Биолам ЛОМО Д11 использовался для исследования непрозрачных объектов в отраженном свете с осветителем ОИ-21 и позволил фотографировать наблюдаемые объекты, подсвечивая их осветителем ОИ-35. Для этого применялся цифровой фотоаппарат Nikon D3000 с зеркальной камерой с 10-мегапиксельной матрицей, большим трехдюймовым монитором разрешения 230000 точек, процессором EXPEED и с возможностью съемки в формате RAW. Оптические исследования при увеличении до 54 раз дают возможность установить изменения - наличие трещин, локальных разрушений, микроповреждения в виде трещин, каверн и т.д., происходящие в бетоне повышенной термостойкости после температурного воздействия от 700 0С до 1100 0С.

2.6. Методы испытаний физико-механических свойств бетона повышенной термостойкости

2.6.1. Определение средней плотности и прочностных характеристик бетона

Определялись средняя плотность бетона повышенной термостойкости по ГОСТ 12730.1-78 [108] на образцах – балочках размером 4×4×16 см, а также прочность при изгибе и сжатии по ГОСТ 30744-2001 [109].

Образцы-балочки бетона, хранились в нормальных условиях при температуре 20 ± 2 ° С и относительной влажности 100 %. Испытание на прочность проводилось через 28 суток нормального твердения.

Прочность бетона, МПа, вычислялась с точностью до 0,1 МПа при испы-

41

таниях на сжатие и до 0,01 МПа при испытаниях на растяжение для каждого образца по формулам

Rсж= P/F,

(2.20)

Rизг.= 3PL/2bh2

(2.21)

где Р – разрушающая нагрузка, Н; F – площадь поперечного сечения образца, м2; b, h, L – соответственно, ширина, высота поперечного сечения призмы и расстояние между опорами при испытании образцов на растяжение при изгибе, мм (м).

Обеспеченность значений полученных характеристик составляло вероятность 0,95.

2.6.2.Определение термостойкости бетона

Всоответствии с требованиями ГОСТ 20910-90 [13] испытания проводились на трех бетонных образцах-кубах с ребром длиной 7,07 см из бетонной смеси рабочего состава.

Сущность метода заключается в определении способности образцов бе-

тона выдерживать резкие смены температур для классов по предельно допустимой температуре применения бетонов И7– И11 от 700 – 1100 ° С до 20 оС.

Для бетонов средней плотности менее 1500 кг/м3 термическую стойкость

Топределяли в воздушных теплосменах в следующем порядке.

1.После высушивания образцы помещали в печь, предварительно разогретую до расчетной температуры, и выдерживали при этой температуре в течение 1 ч. Колебания температуры в печи от расчетной температуры допускались в пределах ± 10 0С. Нагрев производили при температуре 700, 900, 11000С.

2.Через 1 ч образцы вынимали из печи и охлаждали струей воздуха комнатной температуры из вентилятора в течение 20 мин. Затем нагревание повторяли.

3.Каждый нагрев и охлаждение на воздухе являлись одной теплосменой. После каждой теплосмены остывшие образцы осматривали, отмечали появление трещин, характер разрушения (выкрашивание или откол материала) и определяли потери в массе.

4.Число теплосмен, вызвавших разрушение образцов или потерю бетоном 20 % первоначальной массы, принимали за термическую стойкость бетона

ввоздушных теплосменах.

2.6.3.Определение теплопроводности бетона

Всоответствии с требованиями ГОСТ 7076-99 [110] испытания на теплопроводность проводились на установке ИТСМ-100.

42

Сущность метода заключается в создании стационарного теплового потока, проходящего через плоский образец определенной толщины и направленного перпендикулярно к лицевым (наибольшим) граням образца, измерении плотности этого теплового потока, температуры противоположных лицевых граней и толщины образца.

Образцы с помощью шлифования приводили в соответствие с требуемыми размерами, которые составляли 150×150×15 мм. Толщину образцапараллелепипеда измеряли штангенциркулем с погрешностью не более 0,1 мм в четырех углах на расстоянии (50,0 ± 5,0) мм от вершины угла и посередине каждой стороны. За толщину образца принимали среднеарифметическое значение результатов всех измерений. Затем образцы высушивали в сушильном шкафу до постоянной массы. Перед началом испытаний образцы взвешивали. Погрешность определения массы и размера образцов не превышала 0,5 %. Для высушенных образцов определяли изменение их влажности. Образец устанавливали между теплообменниками. В процессе испытания разность температур лицевых граней образца Tu составляла от 10 до 30 К. Устанавливали заданные значения температур рабочих поверхностей плит прибора и последовательно через каждые 300 с проводили измерения. После окончания измерений образцы взвешивали.

Определяли плотность образца в соответствии с нормативно-технической документацией на материал или изделие конкретного вида.

Теплопроводность в Вт/(м × К) вычисляли по формуле

λ =

δ

,

(2.22)

Dt - n × R

 

 

 

qср k

где δ - толщина образца (высота рамки), м; ∆t - перепад температур на поверхностях образца, ° С; qср – средняя плотность теплового потока, проходящего через образец, Вт/м2; n – число контактов; Rk – термическое сопротивление контакта между образцом и теплообменником или слоями образца, м2× К/Вт, Rк=0,005 м2× К/Вт (для теплоизоляционных материалов и изделий не учитывают).

2.6.4. Определение реологических свойств бетонной смеси

Определяли реологические характеристики бетонной смеси на вискозиметре ротационного типа РВ-4, а именно предельное напряжение сдвига и величина «эффективной» вязкости. Схема ротационного вискозиметра РВ-4 представлена на рис. 2.9.

Готовили цементное тесто, которым заполняли наружный цилиндр прибора. Затем цилиндр укрепляли на оси вращения прибора, в него вставляли внутренний сплошной рифленый цилиндр. Часть цементного теста, вытесненная внутренним цилиндром, удаляли. Поверхность теста выравнивалась для то-

43

го, чтобы глубина погружения внутреннего цилиндра была одинаковая прим всех опытах.

Рис. 2.9. Схема ротационного вискозиметра РВ-4:

1 – наружный цилиндр (радиусом 2 см);

2 – внутренний цилиндр (радиусом 1 см), глубина погружения внутреннего цилиндра – 9,7 см;

3 – барабан (с радиусом 2,2 см);

4 – тормозное приспособление;

5 – ролик; 6 - зазор между внешним и внутренним цилиндрами

Измерения начинали с постепенного нагружения системы. Внешний цилиндр приводили во вращение посредством грузов (для удобства расчётов использовали грузы одинаковой величины), прикреплённых к концам нити, перекинутой через блоки и намотанной на барабан 5, ось которого совпадает с осью вращения системы. Внутренний цилиндр 2 имеет рифлёную поверхность, что исключает возможность скольжения цементного теста по его поверхности и обусловливает лучшее сцепление. Остановку прибора и его пуск осуществляли с помощью тормозного приспособления 4.

Принцип работы РВ-4 основан на измерении скорости вращения наружного цилиндра при неподвижном внутреннем под действием груза (P) определенной величины.

Предельное напряжение сдвига τо (Па) рассчитывали по формуле

τ0=F/S,

(2.23)

где F – сила, приложенная к исследуемой среде, Н; S - площадь поверхности исследуемой среды, к которой приложена сила F; является постоянной величиной, зависящей от размеров внутреннего и внешнего цилиндров (S = 0,008996м2).

«Эффективную» вязкость µ (Па·с) рассчитывали по формуле

µ =ctg α = τ/(dv/dn) ≈ τ /(vm/n)

(2.24)

где dv/dn vm/n - градиент скорости сдвига; vm- линейная скорость вращения наружного цилиндра, м/с; n – расстояние, на котором происходит разрушение цементного теста при вращении наружного цилиндра, м, (n = 0,005 м).

Линейную скорость вращения рассчитывали по формуле

vm= v × r зазор ,

(2.25)

где v – частота вращения, с-1.

44

2.6.5. Методика исследования адгезионной прочности слоя бетона повышенной термостойкости и несущего слоя

в вариатропных изделиях

Исследования адгезионной прочности слоев бетона повышенной термостойкости и бетона несущей конструкции на отрыв выполнялись с помощью электромеханического пресса МР-05-1 с использованием оборудования, соответствующего методике испытаний по ГОСТ 26816-86 [111], позволившего обеспечить равномерное распределение разрывного усилия в контактной зоне двухслойных образцов.

Изготовленные двухслойные образцы со слоем бетона повышенной термостойкости и конструктивным слоем из высокопрочного бетона размером 10 × 10 × 10 см были распилены на балочки размером 5 × 5 × 10 см. Сцепление бетонных слоев изучалось методом отрыва накладок от двухслойных образцов - балочек размером 5 × 5 × 10 см. Металлические накладки приклеивались к образцам смесью клея на основе полиэфирной смолы с молотым пескомнаполнителем. Состав клея на полиэфирной смоле М 105 ТВ: смола полиэфирная М 105 ТВ - 100 вес. частей; бутанокс - отвердитель - 5 вес. частей; молотый песок - наполнитель – 40 вес. частей. Для приготовления клея полиэфирная смола перемешивалась в течение 3 мин с отвердителем, а затем добавлялся наполнитель и снова все перемешивалось до получения однородной массы. Клей использовался в течение 30 мин с момента окончания приготовления.

Испытание образцов методом отрыва проводили в следующей последовательности: в месте приклейки накладок снимали поверхностный слой бетона глубину от 0,5 до 1 мм и поверхность очищали от пыли; накладки приклеивали к бетону так, чтобы слой клея на поверхности бетона не выходил за пределы накладки; образец с приклеенными накладками вставляли в электромеханический пресс МР-05-1 (рис. 2.10) для испытания на отрыв.

Рис. 2.10. Электромеханический пресс МР-05-1

45

При испытании плавно увеличивали нагрузку; фиксировали показание силоизмерителя прибора при отрыве накладок; измеряли площадь проекции поверхности отрыва на плоскости накладки; определяли значение прочности сцепления бетонных слоев при отрыве.

2.7. Определение предела огнестойкости вариатропной железобетонной плиты на основе теплофизического расчета

прогрева бетона в условиях стандартного пожара

Определение пределов огнестойкости вариатопной железобетонной конструкции производится решением двух задач:

-теплотехнической – заключается в расчете температур прогрева сечений железобетонной конструкции при воздействии «стандартного» пожара;

-прочностной (статической) – заключается в расчете несущей способности железобетонной конструкции при воздействии «стандартного» пожара.

В связи с тем, что в наше исследование не входило определение температурных полей и полный теплофизический расчет вариатропной конструкции, то

вданной работе приведены лишь теоретические основы такого расчета.

Для расчета конструкций в условиях стандартного пожара необходимо иметь характеристики огнестойкости, зависящие от теплофизических характеристик бетона при высоких температурах пожара, с учетом ее динамического изменения. В твердых телах при нагреве формируется различная температура в разные моменты времени.

Плиту из бетона повышенной термостойкости примем как неограниченную пластину, так как её толщина гораздо меньше длины и ширины. Рассмотрим решение уравнения теплопроводности для определения распределения температуры по толщине пластины t(x,τ) [112 – 115]. Задача схематически представлена на рис. 2.11.

Рис. 2.11. Схема нагрева неограниченной пластины [112]: τ , x – текущее время и координата; tp(τ) – переменная внешняя температура;

2δ – толщина пластины

Уравнение теплопроводности для этого случая имеет вид вместе с граничными условиями [112 – 115]:

46

w + a ×W x l

t(

λ

t(x)

= a ×

2t(x)

 

 

 

 

 

 

∂ τ

 

x2

 

 

 

 

 

 

x)

 

τ =0

=t0

 

t(x)

 

 

 

 

(2.26)

 

 

 

 

 

 

× t

(x)

 

 

= 0; λ ×

 

-α ×[tp

(τ )- t(x)]

 

= 0,

 

 

 

x

 

 

 

x = 0

 

x

 

x

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

где а – коэффициент температуропроводности; λ – коэффициент теплопроводности; α – коэффициент теплоотдачи; t0 – начальная температура.

Наличие во втором граничном условии системы уравнений (2.26) изменяющейся со временем температуры пожара tp(τ) усложняет решение этой системы уравнений по сравнению с известными случаями [116,117]. Для решения задачи использовали новую искомую функцию [118]

W(x) = t(x) t p (τ ),

(2.27)

тогда система уравнений (2.26) примет вид

 

w

 

= a ×

2

w + f

(t)

 

 

 

 

 

¶t

 

 

x2

 

 

 

τ=0 = W0

 

 

 

 

 

W

 

 

 

w

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 0;

 

 

x

 

 

 

 

 

 

 

 

 

 

 

x =0

 

 

− ∂ t p(τ)

 

 

 

 

 

где

 

f (τ)

=

 

 

 

 

∂ τ

 

 

 

 

 

 

 

 

 

 

x = 0

; W0 = t0 tp(0) .

(2.28)

(2.29)

(2.30)

(2.31)

Решение системы уравнений (2.28) – (2.30) искали в виде суммы двух функций [119]

W (x) = u(x) + v(x) ,

(2.32)

где каждая слагаемая функция является решением соответствующей задачи

47

u = a × 2u

¶t

x2

 

= 0

u τ=0

u

= 0;

x

x =0

+ f (t)

 

 

 

 

u + a

× u

 

 

= 0

x

l

 

 

x = τ

 

 

 

 

(2.33)

(2.34)

(2.35)

V

 

= a

2V

 

 

 

 

 

 

 

x

 

 

 

 

 

(2.36)

∂τ

 

 

2

 

 

 

 

 

 

τ =0 = W0

 

 

 

 

 

(2.37)

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

V

 

α

 

 

 

 

 

 

 

 

 

 

 

 

V

 

= 0;

+

×V

= 0

(2.38)

x

 

x

λ

 

 

x=0

 

 

 

 

 

x

 

 

 

 

 

 

 

 

В результате преобразований, на основе метода разделяющихся переменных решение поставленной задачи (2.26) получено в виде аналитической зависимости (2.39), характеризующей прогрев любой точки неограниченной симметрично нагреваемой пластины под воздействием произвольно изменяющейся температуры пожара [118]

 

 

 

 

 

 

 

2 aτ

 

t(x) = t p (τ )+W0 An

cos μn

x

×e−μn

 

+

δ 2

 

 

 

 

n=1

 

 

 

δ

 

 

x

− μn2

a

(τ −υ )

(υ )dυ

(2.39)

 

2

+ An

cos μn δ

e

δ

f

 

n=1

 

 

δ

 

 

 

 

 

 

 

где W0 – функция, учитывающая начальное распределение температуры по

толщине пластины. При t(x,τ ) = t(0)W (0) = 0 ,

An =

2 sin μ n

,

μ n – кор-

 

 

 

 

μ n + sin μ n c o s μ n

 

 

ни характеристического уравнения ctg μn = 1 μn , которое имеет бесконечное

Bi

число положительных корней μ1, μ2, ... . Графическое решение характеристического уравнения приведено на рис. 2.12. Аn и μn находятся также по таблицам в

виде функций числа Био; δ – половина толщины пластины; υ – переменный параметр, имеющий размерность времени и изменяющийся в интервале значе-

ний от 0 до τ ; f (υ ) = dt p – функция, характеризующая изменение температуры

dτ

пожара во времени.

48

Рис. 2.12. К решению уравнения 2.28 [11

Анализ формулы (2.39) показывает, что если в начальный момент времени температура пластины и пожара равны, как это принято при расчете огнестойкости строительных конструкций, то в этом случае значение W0 = 0 и вместо (2.39) получим

 

τ

a

(τ − υ)du .

 

 

2

 

t(x, t) = t p (t) + An cosmn

x

f (u) ×e− μ n

 

 

δ 2

(2.40)

d

n =1

0

 

 

 

Для получения решения о температурном поле в неограниченной пластине, нагреваемой температурным режимом пожара, пропорциональным стандартной кривой [117], воспользуемся уравнением (2.39). Температура стандартного пожара определяется соотношением [120]

t p (t) = t0 + mk 149,83ln(480t + 1),

(2.41)

где τ – время, ч; mk – коэффициент пропорциональности, ч.

Зависимость отражает высокую скорость роста температуры, что характеризует активную фазу развития пожара, график которого представлен на рис.

2.13.

Рис. 2.13. Кривая температуры стандартного пожара при mk = 1,1 [112]

49

Опираясь на результаты ранее выполненных исследований [37, 112, 118] можно утверждать, что в слое бетона повышенной термостойкости в условиях стандартного пожара будут развиваться подобные явления. Огнезащитный слой из предлагаемого бетона, непосредственно подвергшийся воздействию высокой температуры, будет изменять свои теплотехнические характеристики, обеспечивая вариатропному изделию защиту, замедляющим проникновение температуры в глубину плиты. Приведенные теоретические положения теплотехнического расчета обеспечивают возможность распределение температуры по сечению плиты с применением бетона повышенной термостойкости, оценить время прогрева до заданной температуры, что позволит уточнить расчет конструкций на основе такого бетона.Расчет предела огнестойкости и оценка эффективности разработанного бетона повышенной термостойкости выполнялись на примере железобетонной плиты перекрытия размерами 6000 × 1200 × 240 мм, свободно опирающейся по двум сторонам. При расчетах принималось одностороннее воздействие «стандартного» пожара на нижнюю поверхность плиты при условии отсутствия теплообмена с необогреваемой стороны. Расчет выполнен по потери несущей способности.

Исходные данные, необходимые для расчета: геометрические характеристики плиты: ширина, толщина, длина рабочего пролета; характеристики бетона: вид, класс по прочности, значение величины защитного слоя бетона; характеристики огнезащитного покрытия - бетона повышенной термостойкости: толщина слоя, плотность, теплопроводность и др.; характеристики рабочей арматуры: класс, диаметр, схема армирования; нормативные постоянные и временные нагрузки на плиту (q). Прочностные характеристики материалов, применяемых для изготовления железобетонной плиты перекрытия: нормативное сопротивление бетона осевому сжатию (Rbn) и нормативное сопротивление арматуры растяжению (Rsn) принимались в зависимости от класса бетона и арматуры по справочным данным. Расчет выполняется согласно рекомендациям, изложенным в работах [121 – 123].

50