
- •Воронеж 2011
- •1Основные положения
- •1.1Термины и определения. Классификация
- •1.2Основные сведения о проектировании и конструировании
- •1.3Стадии разработки конструкторской документации
- •1.4Стандартизация и взаимозаменяемость деталей машин
- •2Требования к деталям машин
- •2.1Особенности расчета деталей машин
- •2.2Виды нагрузок, действующих на детали машин
- •2.3Циклы напряжений и их параметры
- •2.4Методы определения допускаемых напряжений
- •3Соединения. Типы и характеристика
- •3.1Общая характеристика соединений
- •3.2Заклепочные соединения. Общие сведения
- •3.3Классификация заклепок и заклепочных швов
- •3.4Расчет прочных заклепочных швов
- •3.5Условное изображение заклепочных швов на чертеже
- •4Сварные соединения
- •4.1Общие сведения
- •4.2Принцип действия дуговой сварки
- •4.3Классификация способов сварки
- •4.4Классификация сварных соединений и швов
- •4.5Расчет стыковых сварных швов
- •4.6Расчет угловых сварных швов
- •4.7Уточненный расчет комбинированного сварного шва
- •4.8Условное изображение сварных швов на чертеже
- •Некоторые буквенно-цифровые обозначения швов
- •5Шпоночные и шлицевые соединения
- •5.1Типы шпоночных соединений
- •5.2Расчет шпоночных соединений
- •5.3Сегментные шпонки
- •5.4Конструкция и расчет шлицевых соединений
- •6Соединения с натягом
- •6.1Общие сведения
- •6.2Расчет цилиндрических соединений с натягом
- •7Клиновые и штифтовые соединения
- •7.1Назначение и классификация соединений
- •7.2Классификация
- •7.3Расчеты на прочность
- •8Резьбовые соединения
- •8.1Назначение и конструкция резьбовых соединений
- •8.2Классификация резьбовых соединений
- •8.3Распределение нагрузки между витками резьбы
- •8.4Виды разрушений в резьбовом соединении
- •8.5Силы, действующие в винтовой паре
- •8.5.1Величина окружной действующей силы(q)
- •8.5.2 Момент завинчивания гайки или винта
- •8.5.3Момент отвинчивания винта или гайки
- •8.5.4Расчет ненапряженных болтовых соединений
- •8.6Расчет напряженных болтовых соединений
- •9Передачи. Общие вопросы
- •9.1Назначение и классификация передач
- •9.2Классификация передач
- •9.3Основные кинематические характеристики передач
- •9.4Передачи с постоянным передаточным числом
- •9.5Передачи с переменным передаточным числом
- •10Ременные передачи
- •10.1Общие вопросы
- •10.2Плоскоременная передача
- •10.3Типы приводных ремней
- •10.4Шкивы (гост 17383-72).
- •10.5Кинематические силовые зависимости
- •10.5.1Относительное скольжение ремня.
- •10.5.2Динамика ременной передачи
- •10.5.3Напряжения в ремне
- •10.6Расчет передач по кривым скольжения
- •10.7Клиноременная передача
- •10.7.1Клиновые ремни (гост 1284 – 68).
- •10.7.2Шкивы клиноременной передачи
- •10.7.3Расчет кинематических передач
- •11Цепные передачи
- •11.1Общие вопросы
- •11.2Классификация цепных передач
- •11.3Достоинства и недостатки цепных передач
- •11.4Детали цепных передач
- •11.4.1Цепи
- •11.4.2Звездочки
- •11.5Основные параметры цепных передач
- •11.6Критерии работоспособности и расчета цепных передач
- •11.7Основы работы передачи
- •11.8Расчет передачи
- •11.9Конструирование цепных передач
- •12Зубчатые передачи
- •12.1Общие сведения
- •12.2Классификация зубчатых передач
- •12.3Точность зубчатых передач
- •12.4Материалы зубчатых колес
- •12.5Методы изготовления зубчатых колес
- •12.5.1Изготовление зубчатых колес без снятия стружки
- •12.5.2Изготовление зубчатых колес путем снятия стружки.
- •13Виды разрушения зубьев. Критерии работоспособности и расчета
- •13.1Виды разрушения зубьев
- •13.2Расчет основных геометрических параметров цилиндрических прямозубых колес
- •13.3Расчет зубьев цилиндрических прямозубых зубчатых колес на изгиб
- •14Расчет зубьев цилиндрических зубчатых колес на контактную прочность
- •14.1Расчет на контактную прочность
- •14.2Особенности расчета и конструкции косозубых и шевронных зубчатых колес
- •15Общие сведения о конических зубчатых передачах
- •15.1Расчет основных геометрических параметров конических прямозубых колес
- •15.2Расчет зубьев прямозубых конических передач
- •16Расчет допускаемых напряжений
- •16.1Расчет допускаемых напряжений
- •16.2Силы, действующие на валы от зубчатых колес
- •16.2.1Прямозубые цилиндрические колеса
- •16.2.2Косозубые цилиндрические колеса
- •16.2.3Прямозубые конические колеса
- •17Винтовые и гипоидные передачи
- •18Червячные передачи
- •18.1Эвольвентный червяк
- •18.2Материалы. Критерии работоспособности и расчета червячных передач
- •18.3Расчет основных геометрических параметров червячных передач
- •18.4Червячные колеса
- •18.5Силы, действующие в червячном зацеплении
- •18.6Расчет на изгиб зубьев червячного колеса
- •18.7Расчетная нагрузка и допускаемые напряжения
- •18.8Тепловой расчет червячных передач
- •19Понятие о системе допусков и посадок
- •19.1Понятие о взаимозаменяемости
- •19.2Допуски размеров, посадок
- •19.3Квалитеты
- •19.4Система отверстия и система вала
- •19.5Предельные отклонения формы и расположения поверхностей
- •20Зубчатые и червячные редукторы. Общие сведения
- •20.1Зубчатые и червячные редукторы
- •20.2Классификация редукторов
- •20.3Принципиальная конструкция цилиндрического редуктора
- •20.4Расчет основных конструктивных параметров редукторов
- •21Валы и оси
- •21.1Общие вопросы
- •21.2Конструкция валов. Элементы вала
- •21.3Материалы валов и их термообработка
- •21.4Критерии работоспособности и расчета валов
- •21.5Расчетная схема и расчетные нагрузки
- •21.5.1Размещение опор вала
- •21.5.2Определение сил в зацеплении закрытых передач
- •Определение сил в зацеплении передачи
- •21.6Определение консольных сил
- •21.7Расчет осей и валов на статическую прочность
- •21.8Расчет валов на статическую прочность
- •21.9Расчет вала на статическую прочность при совместном действии изгиба и кручения
- •21.10Расчет осей и валов на выносливость
- •21.11Расчет осей и валов на жесткость
- •21.12Расчет валов на колебания
- •21.13К определению расстоянии между опорами ведомого вала
- •21.14Последовательность расчета пролета вала
- •22 Подшипники качения
- •22.1Подшипники качения. Общие сведения
- •22.2Классификация
- •22.3Обозначение подшипников
- •22.4Точность подшипников качения
- •22.5Причины выхода подшипников из строя и критерии расчета
- •22.6Расчет подшипников качения на долговечность
- •22.7Определение приведенной нагрузки и подбор подшипников качения
- •22.8Подбор подшипников качения
- •22.9Статическая грузоподъемность подшипников
- •22.10Распределение нагрузки между телами качения
- •22.11Смазка подшипников качения
- •22.12Посадки подшипников
- •22.13Зазоры в подшипниках
- •23Подшипники скольжения
- •23.1Общие сведения
- •23.2Классификация
- •23.3Конструкции подшипников скольжения
- •23.4Подшипниковые материалы
- •23.5Критерии работоспособности и расчета подшипников скольжения
- •23.6Условные расчеты подшипников
- •23.7Тепловой расчет подшипников
- •23.8Проектировочный расчет подшипников жидкостной смазки
- •24Конструирование подшипниковых узлов
- •24.1Схемы установки подшипников
- •24.2Конструирование опор валов конических шестерен
- •24.3Конструирование опор валов-червяков
- •24.4Установка элементов передач на валах
- •24.5Назначение диаметров вала
- •24.6Длины характерных участков вала
- •24.6.1Основные способы осевого фиксирования колес (шкивов)
- •25Муфты
- •25.1Муфты. Общие сведения
- •25.2Классификация муфт
- •25.3Подбор стандартной муфты
- •25.4Конструкции муфт
- •25.4.1Жесткие муфты. Вид неразъемные
- •25.4.2Муфты, разъемные в плоскости, параллельной оси вала
- •25.4.3Муфты, разъемные в плоскости, перпендикулярной оси вала
- •25.4.4Компенсирующие муфты
- •Заключение
- •Библиографический список
- •394026 Воронеж, Московский просп., 14
20.3Принципиальная конструкция цилиндрического редуктора
На Рис. 20 .96 приведена конструкция одноступенчатого косозубого цилиндрического редуктора. Редуктор состоит из литого чугунного корпуса 3, в котором смонтированы подшипниковые узлы, служащие опорами для быстроходного и тихоходного валов редуктора. Подшипниковые узлы состоят из подшипника 2, крышки подшипника 1, регулировочных прокладок 19 и маслоудерживающего кольца 18. Для выходного конца вала применяют проходные крышки с уплотнениями 14. Размещение опор валов в жестком чугунном корпусе обеспечивает высокую точность зацепления и долговечность привода.
Рис. 20.96. Редуктор цилиндрический косозубый
Корпус закрыт крышкой 9. В верхней части крышки 9 имеется закрываемое смотровой крышкой 11 отверстие, предназначенное для осмотра внутренней части редуктора и заливки масла. Для обеспечения плотности стыка между смотровой крышкой 11 и отверстием установлена прокладка 10.
При сборке редуктора крышка 9 крепится к корпусу 3 двенадцатью болтами 6 с гайками 8 и пружинными шайбами 7. Центрирование отверстий под болты 6 в корпусе и крышке редуктора происходит с помощью двух штифтов 13.
Редуктор в сборе перемещают грузоподъемными средствами с помощью двух рым-болтов 12. Для слива отработанного масла служит пробка 17. Контроль уровня масла в редукторе производят жезловым маслоуказателем 16.
Быстроходный вал обычно выполняют в виде вала-шестерни 15, а зубчатое колесо 4 насаживают на тихоходный вал 4 с помощью шпоночного соединения.
20.4Расчет основных конструктивных параметров редукторов
Для удобства сборки корпус редуктора выполняется составным – основание и крышка. Основание с помощью лап или пояса крепится к фундаменту или раме. Для точной установки крышки на основание корпуса пользуются коническими штифтами.
Корпус редуктора должен быть прочным и жестким, т.к. его деформации могут вызвать перекос валов и неравномерное распределение нагрузки по длине зубьев. Для повышения жесткости корпуса его усиливают наружными или внутренними ребрами.
Корпусы редукторов обычно выполняют литыми из серого чугуна (СЧ 15-32/ СЧ 18-36) средней прочности. Для передачи больших мощностей или ударных нагрузок корпусы отливают из высокопрочного чугуна или стали. В индивидуальном и мелкосерийном производствах корпусы редукторов изготавливают сварными из листовой стали.
Основные размеры корпуса – длина, ширина и высота – применяются в зависимости от размеров зубчатых колес. Другие размеры находятся по империческим формулам. Например, толщина (δ) стенок чугунных литых оснований корпуса равна:
мм.
Толщина стенок крышек:
δK = 0,9δ.
где: М – момент на тихоходном валу, 10 Н·м
Диаметры болтов крепления крышки:
мм.
Диаметры фундаментных болтов:
мм.
Толщина фундаментных лап:
SФ=1,5dФ.
Ширина пояса или лап для расположения болтов принимается из соотношения:
bП = (2,1 … 2,5)d.
d – диаметр болта данного пояса.
Рекомендуемый ряд крутящих моментов на тихоходных валах редукторов в соответствии с проектом международного стандарта составляет по нормальному ряду чисел со знаменателем 2 в диапазоне 1-125 Н·м и со знаменателем 1,41 в диапазоне 125–1000000 Н·м.
Передаточные числа редукторов выбирают по нормальному ряду чисел со знаменателем 1,25 (1-й предпочтительный ряд) или со знаменателем 1,12 (2-й ряд) (ГОСТ )
Межосевые расстояния быстроходной (αWБ) и тихоходной (αWT) ступеней двух и трехступенчатых редукторов зубчатых цилиндрических должны соответствовать ГОСТ
Валы, как правило, подвергают улучшению до твердости НВ 270 – 300. Валы d ≤ 80 мм допускается изготавливать из стали 45; диаметром d = 80-125 – из стали 40X; а валы d = 125 – 200 мм – из стали 40ХН; 35ХМ. Тихоходные валы имеют выходной конец, в котором напряжения кручения составляют около 28 МПа концы валов целесообразно выполнять коническими.
Опоры валов редукторов выполняются в виде подшипников качения. Обычно в опорах устанавливается по одному подшипнику качения. При малых и средних нагрузках применяют шарикоподшипники, при средних и больших – роликоподшипники. В редукторах с шевронной передачей быстроходный вал передачи устанавливают на плавающих, обычно, цилиндрических роликоподшипниках. Это обеспечивает самоустановку вала по оси и одинаковую нагрузку полушевронов.
В редукторах с конической передачей для лучшей фиксации зубчатых колес в осевом направлении валы передачи рекомендуется устанавливать на радиально-упорных, чаще конических роликоподшипниках.
Смазка зацепления при V ≤ 12,5 м/c рекомендуется картерная (окунанием). Емкость масляной ванны назначают из расчета 0,35 – 0,7 литра на I кВт передаваемой мощности (большие значения – при большей вязкости масла и наоборот). Зубчатые колеса следует погружать в масло на глубину 3-4 модуля. Тихоходные колеса (2-й и 3-й ступени) при необходимости допустимо погружать на величину до 1/3 диаметра колеса. В редукторах с быстроходными передачами применяют струйную или циркуляционную смазку, осуществляемую под давлением. Масло, прокачиваемое насосом, проходит через фильтр и при необходимости через охладитель, а затем поступает к зубьям через трубопровод и сопла. При окружной скорости V ≤ 20 м/c для прямозубых передач и при V ≤ 50 м/с для косозубых масло подается непосредственно в зону зацепления. При V > 50 м/c (V > 20 м/c) , во избежание гидравлического удара, масло подается раздельно на шестерню и колесо и на некотором расстоянии от зоны зацепления.
Смазка подшипников редуктора при V > 4 м/c может осуществляться тем же маслом, что и зубчатых колес, путем разбрызгивания масла. При V < 4 м/с предусматривается самостоятельная (консистентная) смазка. При больших скоростях и нагрузках на подшипники предусматривается смазка под давлением, осуществляемая от общей системы.
Расчет зубчатого редуктора состоит из расчета его элементов – передач, валов, шпонок, подшипников. Для редукторов большой мощности производится тепловой расчет. При расчете зубчатых передач редукторов, выполненных в виде самостоятельных агрегатов, основные параметры этих передач должны быть согласованы с соответствующими ГОСТ.
Червячные колеса с целью экономии цветных металлов выполняются с венцом из антифрикционных материалов и стальным или чугунным центром.
- бандажированная конструкция, в которой бронзовый обод (венец) посажен на стальной центр с натягом. Рекомендуется легкопрессовая реже прессовая посадки. Чтобы исключить возможность сдвига венца, ввертывают в стыкуемые поверхности винты. Конструкция применяется для колес относительно небольших размеров и ненапряженных в тепловом отношении (Рис. 20 .97).
- болтовая конструкция, в которой бронзовый венец, выполненный с фланцем, прикрепляется болтами к ступице колеса. Применяется для колес больших и средних диаметров.
- биметаллическая конструкция, бронзовый венец, который отлит в форму с предварительно вставленным в нее центром. Конструкция наиболее рациональна и применяется в редукторах серийного производства.
Рис.20.97. Типовые конструкции зубчатых венцов червячных колес
В червячных передачах, как правило, применяются подшипники качения.
Смазка червячных передач с нижним расположением червяка (Рис. 20 .98) осуществляется окунанием. Уровень масла таков, чтобы погружался в масло на глубину, близкую к высоте витка. Если червяк расположен сверху, то уровень масла роли не играет (при средних и небольших скоростях). В быстроходных передачах этого типа применяют циркуляционную – принудительную смазку.
а б
в
г
Рис.20.98. Схемы червячных редукторов: с нижним (а); с верхним (б); с боковым расположением червяка (в, г)