
- •А.А. Лукин з.С. Лукина
- •1. Композиционные материалы
- •1.3. Дисперсно-упрочненные композиционные материалы, армированные частицами
- •1.4. Волокнистые композиционные материалы
- •1.5. Слоистые композиционные материалы
- •2. Композиционные материалы с металлической матрицей
- •3. Композиционные материалы с неметаллической матрицей
- •3.1. Общие сведения, состав и классификация
- •3.2. Карбоволокниты
- •3.4. Бороволокниты
- •3.5. Органоволокниты
- •4. Перспективы применения композитных материалов
- •5. Основы порошковой металлургии
- •5.1. Способы получения и технологические свойства порошков
- •5.2. Металлокерамические материалы
- •6. Конструкционные порошковые материалы
- •7. Изготовление металлокерамических деталей
- •7.1. Приготовление смеси
- •7.2. Способы формообразования заготовок и деталей
- •7.3. Спекание и окончательная обработка заготовок
- •7.4. Технологические требования, предъявляемые к конструкциям деталей из металлических порошков
- •8. Твердые сплавы
- •9. Прочие порошковые сплавы
- •10. Свойства и применение композиционных материалов
- •10.1. Керамическая технология и классификация керамики
- •10.2. Свойства и применение керамических материалов
- •Контрольные вопросы
- •Заключение
- •Библиографический список
- •394026 Воронеж, Московский просп., 14
1.3. Дисперсно-упрочненные композиционные материалы, армированные частицами
По геометрическому признаку эти композиты относятся к одному классу, так как армирующий компонент является нуль-мерным компонентом, имеющим все три размера одного и того же порядка (рис. 1, а). Частицы второго компонента (фазы) беспорядочно распределены в матрице и в зависимости от их количества могут либо упрочнять матрицу, препятствуя развитию дислокационного скольжения при приложении нагрузки, либо разгружают матрицу, воспринимая часть приложенной нагрузки. В первом случае композиционный материал относится к дисперсноупрочненным, во втором - к армированным частицам и композитам. В дисперсноупрочненных композитах размер частиц d 1 мкм (субмикроструктурированные композиты), а их количество составляет 1...15%. В качестве дисперсных фаз обычно используют оксиды, бориды, карбиды, силициды. Возможно также использование интерметаллидов [5]. Эффективность упрочнения матрицы некогерентными дисперсными частицами фаз зависит от их размера и расстояния между соседними частицами. Наибольший эффект упрочнения наблюдается при размере частиц меньше 0,1 мкм, расстоянии между ними 5, = 0,01...0,3 мкм и количестве около 15% [4].
|
Рис. 2. Схематическое изображение различных микроструктур КМ [4]: 1 - матрица; 2 - армирующие частицы диаметром dЧ, 3 - армирующие волокна диаметром dВ; dС - толщина слоя в слоистом композите; SЧ - расстояние между частицами |
Дисперсионные композиционные материалы имеют сходство с традиционными дисперсионно-твердеющими сплавами, в которых дисперсные частицы, выделяющиеся при старении, также упрочняют матрицу. Однако в дисперсионно-твердеющих сплавах эффект упрочнения снижается при нагреве за счет растворения, коагуляции и разупорядочивания. Главное же преимущество дисперсноупрочненных композитов состоит не в повышении предела текучести при комнатной температуре, а в способности сохранять высокий уровень предела текучести и соответственно увеличивать сопротивление ползучести матрицы в широкой температурной области. Поэтому в качестве дисперсных фаз целесообразно использовать фазы, которые нерастворимы в матрице и некогерентны с ней.
Роль армирующих частиц сводится не столько к упрочнению матрицы, сколько к перераспределению приложенной нагрузки между матрицей и наполнителем. Причем важное назначение матрицы - это передача нагрузки армирующим частицам. Отметим, что свою роль армирующие частицы выполняют, если их содержание превышает 25 %.
В качестве армирующих компонентов используют металлы, интерметаллиды, оксиды, нитриды и другие вещества, существенно отличающиеся от матрицы по физико-механическим свойствам.
1.4. Волокнистые композиционные материалы
Эти композиты в основном микроструктурированные композиционные материалы, характеризующиеся тем, что в качестве наполнителя используются одномерные армирующие компоненты, один из размеров которых значительно превышает два других.
В волокнистых композиционных материалах пластичная матрица армирована высокопрочными волокнами толщиной от нескольких микрометров до сотен микрометров. Чем больше отношение длины к диаметру волокна, тем выше степень упрочнения. В качестве армирующих волокон могут использоваться: металлические проволоки, усы и кристаллы фаз, полученных направленной кристаллизацией; волокна неметаллов, таких как углерод и бор, полученных по специальным технологиям; керамические волокна на основе Al2O3, SiC и др.; стекловолокно; органические волокна (полиэтиленовые, полиэфирные, полиамидные и др.).
Волокна имеют очень высокий уровень свойств. Именно это позволяет реализовать идею создания волокнисто-армированных микро- и макроструктур, как структур материалов, в которых волокна, имеющие более высокий модуль упругости и предел прочности, чем матрица, воспринимают основную долю нагрузки.
Содержание волокон в матрице может меняться в щироких пределах. Теоретически максимальное содержание волокон может достигать 91 % объема. Однако в реальных условиях уже при объемной доле волокон 80 % возникают проблемы на границе раздела волокно-матрица, что приводит к ухудшению свойств волокнистого композита.
Естественно, что выбор природы волокна определяется назначением композита и материалом матрицы, прежде всего физико-химической природой взаимодействия на границе раздела матрица-волокно. Однако при прочих равных условиях комплекс свойств волокнистого композита определяется геометрической схемой армирования (рис. 1). Схемы хаотичного армирования короткими волокнами, одномерно армированные короткими и длинными волокнами, могут быть использованы для любой матрицы, в то время как остальные - в основном только для полимерной матрицы. Следует также отметить, что схемы двумерного и пространственного армирования легче всего реализуются при изготовлении деталей и узлов из полимерных материалов.
Композиционные материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50–100 %), модуля упругости, коэффициента жесткости (Е/γ) и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости.
В табл.1 приведены свойства некоторых волокнистых композиционных материалов.
Таблица 1
Механические свойства композиционных материалов на металлической основе
Материал |
σВ |
σ-1 |
Е, ГПа |
σВ/γ |
Е/γ |
МПа |
|||||
Бор–алюминий (ВКА–1А) |
1300 |
600 |
220 |
500 |
84,6 |
Бор–магний (ВКМ–1) |
1300 |
500 |
220 |
590 |
100 |
Алюминий–углерод (ВКУ–1) |
900 |
300 |
220 |
450 |
100 |
Алюминий–сталь (КАС–1А) |
1700 |
350 |
110 |
370 |
24,40 |
Никель–вольфрам (ВКН–1) |
700 |
150 |
– |
– |
– |
Прочность композиционных (волокнистых) материалов определяется свойствами волокон; матрица в основном должна перераспределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокон должны быть значительно больше, чем прочность и модуль упругости матрицы. Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.
Для упрочнения алюминия, магния и их сплавов применяют борные (σВ = 2500÷3500 МПа, Е = 38÷420 ГПа) и углеродные (σВ = 1400÷3500 МПа, Е = 160÷450 ГПа) волокна, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модуль упругости. Так, волокна карбида кремния диаметром 100 мкм имеют σВ = 2500÷3500 МПа, Е = 450 ГПа. Нередко используют в качестве волокон проволоку из высокопрочных сталей.
Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана.
Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Перспективными упрочнителями для высокопрочных и высокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбида бора и др., имеющие σВ = 15000÷28000 МПа и Е = 400÷600 ГПа.
Композиционные материалы на металлической основе обладают высокой прочностью (σВ, σ-1) и жаропрочностью, в то же время они малопластичны. Однако волокна в композиционных материалах уменьшают скорость распространения трещин, зарождающихся в матрице, и практически полностью исключают внезапное хрупкое разрушение. Отличительной особенностью одноосных волокнистых композиционных материалов являются анизотропия механических свойств вдоль к поперек волокон и малая чувствительность к концентраторам напряжения,
На рис.3 приведена зависимость σВ и Е бороалюминиевого композиционного материала от содержания борного волокна вдоль (1) и поперек (2) оси армирования. Чем больше объемное содержание волокон, тем выше σВ, σ-1 и Е вдоль оси армирования.
Однако необходимо учитывать, что матрица может передавать напряжения волокнам только в том случае, когда существует прочная связь на поверхности раздела армирующее волокно — матрица. Для предотвращения контакта между волокнами матрица должна полностью окружать все волокна, что достигается при содержании ее не менее 15–20 %.
|
Рис.3. Зависимость модуля упругости Е (а) и временного сопротивления σВ (б) бороалюминиевого композиционного материала вдоль (1) и поперек (2) оси армирования от объемного содержания борного волокна |
|
Рис.4. Длительная прочность бороалюминиевого композиционного материала, содержащего 50% борного волокна, в сравнении с прочностью титановых сплавов (а) и длительная прочность никелевого композиционного материала в сравнении с прочностью дисперсионно-твердеющих сплавов (б) |
Матрица и волокно не должны между собой взаимодействовать (должна отсутствовать взаимная диффузия) при изготовлении или эксплуатации, так как это может привести к понижению прочности композиционного материала.
Анизотропия свойств волокнистых композиционных материалов учитывается при конструировании деталей для оптимизации свойств путем согласования поля сопротивления с полями напряжения.
Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, диборида титана и оксида алюминия значительно повышает жаропрочность. Особенностью композиционных материалов является малая скорость разупрочнения во времени (рис.4, а) с повышением температуры.
Основным недостатком композиционных материалов с одно- и двумерным армированием является низкое сопротивление межслойному сдвигу и поперечному обрыву. Этого недостатка лишены материалы с объемным армированием.