
- •Средства автоматизированного проектирования реабилитационной техники. Список экзаменационных вопросов.
- •1. Автоматизация каких процедур проектирования возможна с помощью сапр? Классификация сапр по сфере применения.
- •2. Возможности сапр в области разработки биотехнических (радиоэлектронных систем).
- •Системы автоматизированного проектирования и конструирования (сапр) медицинской техники, определения, назначение, применение, история и тенденции развития. Обзор сапр.
- •Основные этапы проектирования: от технического задания до конструкторской документации (место и роль сапр).
- •5. Сквозное проектирование. Иерархический принцип проектирования в сапр.
- •6. Роль моделирования при проектировании медицинской техники. Моделирование электрических, тепловых, механических, гидро- и аэродинамических процессов.
- •7. Виды анализа электронных принципиальных схем: временной, частотный, по постоянному току, по переменному току, тепловой, Монте-Карло и др.
- •8. Программа схемотехнического моделирования MicroCap, её версии, возможности и основные особенности. Виды анализа.
- •Во временной области (Transient)
- •В частотной области (ac)
- •Анализ статических характеристик (dc)
- •9. Анализ по постоянному току в MicroCap на примере двухкаскадного усилителя на биполярных транзиторах. Задание рабочей точки.
- •10. Анализ во временной области в MicroCap на примере двухкаскадного усилителя на биполярных транзисторах. Задание коэффициента усиления.
- •11. Анализ нелинейных искажений в MicroCap на примере двухкаскадного усилителя на биполярных транзисторах. Нелинейность характеристик электронных элементов.
- •12. Тепловой анализ в MicroCap на примере двухкаскадного усилителя на биполярных транзисторах. Температурные зависимости электронных элементов.
- •13. Частотный анализ в MicroCap на примере фильтров первого и второго порядка. Лачх, фчх, групповая задержка.
- •14. Анализ Монте-Карло в MicroCap на примере режекторного фильтра. Разброс параметров электронных элементов.
- •15. Оптимизация параметров в MicroCap на примере полосового фильтра. Оптимум функций.
- •16. Основные этапы конструирования печатных плат с использованием сапр.
- •17. Виды корпусов радиоэлектронных элементов. Основные параметры моделей радиоэлектронных элементов. Особенности разработки моделей конструктивных элементов в сапр.
- •1. Простые корпуса для пассивных элементов:
- •2. Сложные корпуса для многовыводных полупроводниковых приборов и интегральных микросхем:
- •3. Различные нестандартные корпуса для компонентов неправильной формы (индуктивности, переключатели).
- •18. Основы виды и этапы работы в сапр Circuit Maker.
- •1) Разработка схемотехнического файла
- •2) Разводка печатной платы
- •19. Создания библиотек корпусов и посадочных мест в сапр Circuit Maker.
- •20. Подготовка принципиальной схемы для разработки печатной платы. Преобразование принципиальной схемы в плату в сапр Circuit Maker.
- •21. Расположение электронных компонентов на печатной плате. Основные принципы и правила.
- •22. Трассировка печатных плат, основные принципы и правила. Подготовка к трассировке. Автоматическая и ручная трассировка в сапр Circuit Maker. Работа со слоями печатной платы.
- •1) Формат dxf
- •2) Создание Gerber файлов
- •3) Создание файлов в формате n/c drill
- •25. Подготовка технической документации. Основные правила и рекомендации. Гост.
- •1. Классификация сапр по целевому назначению.
- •Математическое обеспечение сапр.
- •3. Программное обеспечение сапр
- •Сапр схемотехнического моделирования.
- •5. Процедура моделирования электронных схем в программе pspice.
- •6. Функциональные возможности среды pSpice.
- •7. Модели электронных компонентов.
- •8. Сапр схемотехнического моделирования MicroCap.
- •9. Программы автоматической трассировки печатных плат.
- •10. Применение сапр при проектировании и производстве протезно-ортопедических изделий.
- •11. Технологии быстрого прототипирования.
- •12. Печать методом послойного наплавления.
- •Рабочая платформа
- •Управление
- •13. Пакеты программ для проектирования печатных плат радиоэлектронных средств.
- •14. Пакеты программ для твердотельного параметрического моделирования.
- •15. Опишите и приведите примеры специализированных сапр.
3. Программное обеспечение сапр
Программное обеспечение САПР представляет собой совокупность всех программ и эксплуатационной документации к ним, необходимых для автоматизированного проектирования. Физически в состав ПО входят:
- Документы с текстами программ;
- Программы, записанные на машинных носителях информации;
- Эксплуатационные документы.
Составляющие программного обеспечения САПР, а также требования к его разработке и документированию установлены государственными стандартами.
ПО САПР подразделяется на:
1) Общесистемное ПО содержит набор программных средств, которые предназначены для повышения эффективности использования вычислительных комплексов САПР и производительности труда персонала, обслуживающего эти комплексы.
К функциям общесистемного ПО относятся:
- Управление процессом вычислений;
-Ввод, вывод и частично обработка информации;
-Диалоговая взаимосвязь с пользователем в процессе проектирования;
-Решение общематематических задач;
-Хранение, поиск, сортировка, модификация данных, необходимых при проектировании, защита их целостности и защита от несанкционированного доступа;
-Контроль и диагностика работы вычислительного комплекса.
2) Специализированное ПО включает в себя прикладные программы и пакеты прикладных программ (ППП), основной функцией которых является получение проектных решений.
Сапр схемотехнического моделирования.
Схемотехническое (электрическое, аналоговое) моделирование представляет собой моделирование электрических процессов в электронных устройствах, обычно изображаемых в виде принципиальных электрических схем, т.е. соединений условных обозначений элементов схемы (транзисторов, диодов, резисторов, конденсаторов и т.д.). Схемотехническое моделирование учитывает реальные физические ограничения в электрических процессах – законы сохранения. Этим оно отличается от логического моделирования, при котором рассматриваются только информационные потоки в схеме. Упомянутые ограничения описываются первым и вторым законами Кирхгофа, которые вытекают из законов сохранения заряда и энергии и называются обычно законами электрического равновесия. Необходимость выполнения этих законов в каждой расчетной точке требует решения соответствующих уравнений электрического равновесия.
В связи с этим в математическую модель электронного устройства (математическую модель схемы, ММС) входят не только модели отдельных элементов и уравнения их связи, как и в логическом моделировании, но и уравнения электрического равновесия, составляемые на основе законов Кирхгофа и называемые обычно топологическими уравнениями. Уравнения отдельных элементов схемы называются компонентными. Таким образом, математическая модель схемы в общем случае состоит из двух подсистем уравнений – компонентной и топологической. Более высокая степень строгости описания электронных схем при схемотехническом моделировании позволяет получить более точные сведения о процессах в схеме по сравнению с логическим моделированием. Платой за это служит увеличение времени моделирования из-за необходимости решения уравнений равновесия. Цель схемотехнического моделирования состоит обычно в определении формы и параметров величин тока и напряжения, возникающих в разных точках схемы. Далее можно вычислить параметры сигналов (фронт, длительность, задержку и др.), рассчитать спектр выходного сигнала, чувствительность схемы к изменению параметров ее элементов, решить задачи статистического анализа схемы и оптимизации ее параметров.
Примеры программ:
Micro-cap
SPICE (Simulation Program with Integrated Circuit Emphasis)
Design Lab