
- •4.Количественные соотношения в химии. Сохранение веса, постоянства состава, кратных отношений. Эквивалент. Закон эквивалентов. Химические эквиваленты простых и сложных веществ (примеры)
- •5.Основные газовые законы: Гей-Люссака, Авогадро и следствия из него. Молярный объем и молярная масса газа. Объединенный газовый закон. Уравнение Менделеева-Клапейрона.
- •8.История развития строения атома. Радиоактивность.Α-β- γ- излучения.
- •9.Теория атома водорода по Бору (постулаты Бора). Закон и уравнение Планки.
- •11.Квантовые числа: главное(ņ) орбитальное (1), магнитное (m1,) спиновое (mŚ). Заполнение электронами энергетических уровней. Принцип Паули. Правило Гунда. Правило Клечковского.
- •15.Ковалентная связь. Метод валентных связей (мвс). Полярная и неполярная ковалентная связь. Механизмы образования (обменный, донорно-акцепторный)Описание химической связи методом электронных пар.
- •16.Свойства ковалентной связи: длина, насыщаемость, направленность. Диполь, дипольный момент.
- •19.Энергетические схемы образования молекул из одинаковых атомов (гомоядерные) и разных атомов (гетероядерные) на примере νо, со, о2, f2.
- •20.Сравнение мвс и ммо (двухцентровые и многоцентровые связи)
- •21.Ионная связь. Поляризация и поляризующая способность ионов. Механизм образования, свойства. Водородная и металлическая связь.
- •37.Комплексные соединения. Координационная теория Вернера. Химическая связь в комплексных соединениях. Диссоциация комплексных соединений в растворах. Устойчивость комплексов. Парфириновые комплексы.
- •38.Электролитическая диссоциация. Элементы теории растворов электролитов. Сильные и слабые электролиты. Классификация электролитов по степени диссоциации.
- •39.Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель. Произведение растворимости.
- •40.Гидролиз. Гидролиз солей. Реакция среды. Степень и константа гидролиз
- •Индикаторы
- •41.Ряд напряжений металлов.Электродные потенциалы
- •42.Классификация окислительною - восстановителя реакций. Окислители и восстановители. Степени окисления. Составление уравнений окислительно-восстановительных реакций в растворах.Уравнение Нернста.
- •43.Термодинамика. Основные задачи химической термодинамики. Основы биоэнергетики. Система и ее окружение (открытая, закрытая и изолированная система).
- •44.Состояние системы. Параметры состояния, уравнения состояния. Термодинамические функции (функции состояния, функции процесса). Первое начало термодинамики..
- •45.Термодинамические процессы: изохорный, изобарный (энтальпия), изотермический, адиабатный, термодинамические обратимые и необратимые процессы.
- •1. Основные понятия и определения; Атом. Молекула. Химический элемент.
- •2.Основные стехиометрические законы: Сохранение веса, постоянства состава, кратных отношений. Эквивалент. Закон эквивалентов. Химические эквиваленты простых и сложных веществ (примеры).
- •3.Основные газовые законы: Гей-Люссака, Авогадро и следствия из него. Молярный объем и молярная масса газа. Объединенный газовый закон. Уравнение Менделеева-Клапейрона.
- •4. Химические уравнения. Классификация химических уравнений. Многоэлементные соединения: гидроксиды, оксиды, соли, кислоты.
- •5.История развития строения атома. Радиоактивность.Α-β- γ- излучения.
- •6.Модель Томсона. Опыты Резерфорда по рассеиванию α- частиц. Модель атома по э.Резерфорду ее недостатки.
- •7.Теория атома водорода по Бору (постулаты Бора). Закон и уравнение Планки.
- •8.Корпускулярно-волновые свойства электрона. Уравнение де Бройля. Уравнение Шредингера.
- •9.Энергетические уровни в атоме. Электронная структура атома. Строение электронного облака. Понятие об атомных орбиталях.
- •10.Квантовые числа: главное(ņ) орбитальное (1), магнитное (m1,) спиновое (mŚ). Заполнение электронами энергетических уровней. Принцип Паули. Правило Гунда. Правило Клечковского.
- •11.Периодический закон и периодическая система элементов д.И.Менделеева принцип построения группы, периода. Ś-,р-,đ- f- блоки элементов. Их расположение в периодической системе.
- •12.Важнейшие характеристики элемента: энергия ионизации, относительная электроотрицательность (оэо), сродство атома элемента к электрону и их зависимость от радиуса атома. Атомные и ионные радиусы.
- •Горизонтальные строчки Периодической таблицы называются периодами, а вертикальные - группами.
- •Номер периода, в котором находится элемент, совпадает с номером его валентной оболочки. Эта валентная оболочка постепенно заполняется от начала к концу периода.
- •13.Химическая связь. Параметры химической связи: энергия связи, длина связи, валентный угол.
- •14. Ковалентная связь. Метод валентных связей (мвс). Полярная и неполярная ковалентная связь. Механизмы образования (обменный, донорно-акцепторный)
- •15.Свойства ковалентной связи: длина, насыщаемость, направленность. Диполь, дипольный момент.
- •18.Энергетические схемы образования молекул из одинаковых атомов (гомоядерные) и разных атомов (гетероядерные) на примере νо, со, о2, f2.
- •19.Сравнение мвс и ммо (двухцентровые и многоцентровые связи)
- •20.Ионная связь. Поляризация и поляризующая способность ионов. Механизм образования, свойства. Водородная и металлическая связь.
- •28.Смещение химического равновесия. Принцип Ле- Шателье. Закон Вант-Гоффа (уравнение, выражающее зависимость температуры от энтальпии)
- •33.Учение о растворах. Общие свойства растворов. Классификация дисперсных систем. Истинные растворы. Концентрации растворов.
- •34.Способы выражения концентрации растворов: молярная, моляльная, нормальная, процентная, мольная доля.
- •35.Коллигативные свойства разбавленных растворов (осмос осмотическое давление, диффузия, закон Вант-Гоффа, законы Рауля.).
- •38.Электролитическая диссоциация. Элементы теории растворов электролитов. Сильные и слабые электролиты. Классификация электролитов по степени диссоциации.
- •39.Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель. Произведение растворимости. Произведение растворимости
- •40. Гидролиз. Гидролиз солей. Реакция среды. Степень и константа гидролиз
- •41.Ряд напряжений металлов.
- •42. Электролиз. Законы Фарадея. Функции катода и анода при электролизе, факторы
- •43. Классификация окислительною - восстановителя реакций. Окислители и восстановители. Степень окисления, валентность.
- •44.Термодинамика. Основные задачи химической термодинамики. Основы биоэнергетики. Система и ее окружение (открытая, закрытая и изолированная система).
- •45.Состояние системы. Параметры состояния, уравнения состояния. Термодинамические функции (функции состояния, функции процесса). Первое начало термодинамики..
- •46.Термодинамические процессы: изохорный, изобарный (энтальпия), изотермический, адиабатный, термодинамические обратимые и необратимые процессы.
- •48.Связь между ∆ğ и Кр.. Энергия Гиббса, энтальпия, энтропия.
- •Атомы и химические элементы. Периодический закон и периодическая система элементов д.И.Менделеева. Изотопы
- •Простые и сложные вещества. Масса атомов молекул. Агрегатное состояние веществ. Структурные формулы веществ. Аллотропия.
- •Энергетические диаграммы и электронные конфигурации атомов бора, углерода, азота. Кислорода, фтора и неона
- •4. Моль.Химические реакции. Типы химических реакций. Валентность, степень окисления Молярная масса.
- •4.Количественные соотношения в химии. Сохранение веса, постоянства состава, кратных отношений. Эквивалент. Закон эквивалентов. Химические эквиваленты простых и сложных веществ (примеры)
- •5.Основные газовые законы: Гей-Люссака, Авогадро и следствия из него. Молярный объем и молярная масса газа. Объединенный газовый закон. Уравнение Менделеева-Клапейрона.
- •8.История развития строения атома. Радиоактивность.Α-β- γ- излучения.
- •9.Теория атома водорода по Бору (постулаты Бора). Закон и уравнение Планки.
- •11.Квантовые числа: главное(ņ) орбитальное (1), магнитное (m1,) спиновое (mŚ). Заполнение электронами энергетических уровней. Принцип Паули. Правило Гунда. Правило Клечковского.
- •15.Ковалентная связь. Метод валентных связей (мвс). Полярная и неполярная ковалентная связь. Механизмы образования (обменный, донорно-акцепторный)Описание химической связи методом электронных пар.
- •16.Свойства ковалентной связи: длина, насыщаемость, направленность. Диполь, дипольный момент.
- •19.Энергетические схемы образования молекул из одинаковых атомов (гомоядерные) и разных атомов (гетероядерные) на примере νо, со, о2, f2.
- •20.Сравнение мвс и ммо (двухцентровые и многоцентровые связи)
- •21.Ионная связь. Поляризация и поляризующая способность ионов. Механизм образования, свойства. Водородная и металлическая связь.
- •37.Комплексные соединения. Координационная теория Вернера. Химическая связь в комплексных соединениях. Диссоциация комплексных соединений в растворах. Устойчивость комплексов. Парфириновые комплексы.
- •38.Электролитическая диссоциация. Элементы теории растворов электролитов. Сильные и слабые электролиты. Классификация электролитов по степени диссоциации.
- •39.Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель. Произведение растворимости.
- •40.Гидролиз. Гидролиз солей. Реакция среды. Степень и константа гидролиз
- •Индикаторы
- •41.Ряд напряжений металлов.Электродные потенциалы
- •42.Классификация окислительною - восстановителя реакций. Окислители и восстановители. Степени окисления. Составление уравнений окислительно-восстановительных реакций в растворах.Уравнение Нернста.
- •43.Термодинамика. Основные задачи химической термодинамики. Основы биоэнергетики. Система и ее окружение (открытая, закрытая и изолированная система).
- •44.Состояние системы. Параметры состояния, уравнения состояния. Термодинамические функции (функции состояния, функции процесса). Первое начало термодинамики..
- •45.Термодинамические процессы: изохорный, изобарный (энтальпия), изотермический, адиабатный, термодинамические обратимые и необратимые процессы.
- •1. Основные понятия и определения; Атом. Молекула. Химический элемент.
- •2.Основные стехиометрические законы: Сохранение веса, постоянства состава, кратных отношений. Эквивалент. Закон эквивалентов. Химические эквиваленты простых и сложных веществ (примеры).
- •3.Основные газовые законы: Гей-Люссака, Авогадро и следствия из него. Молярный объем и молярная масса газа. Объединенный газовый закон. Уравнение Менделеева-Клапейрона.
- •4. Химические уравнения. Классификация химических уравнений. Многоэлементные соединения: гидроксиды, оксиды, соли, кислоты.
- •5.История развития строения атома. Радиоактивность.Α-β- γ- излучения.
- •6.Модель Томсона. Опыты Резерфорда по рассеиванию α- частиц. Модель атома по э.Резерфорду ее недостатки.
- •7.Теория атома водорода по Бору (постулаты Бора). Закон и уравнение Планки.
- •8.Корпускулярно-волновые свойства электрона. Уравнение де Бройля. Уравнение Шредингера.
- •9.Энергетические уровни в атоме. Электронная структура атома. Строение электронного облака. Понятие об атомных орбиталях.
- •10.Квантовые числа: главное(ņ) орбитальное (1), магнитное (m1,) спиновое (mŚ). Заполнение электронами энергетических уровней. Принцип Паули. Правило Гунда. Правило Клечковского.
- •11.Периодический закон и периодическая система элементов д.И.Менделеева принцип построения группы, периода. Ś-,р-,đ- f- блоки элементов. Их расположение в периодической системе.
- •12.Важнейшие характеристики элемента: энергия ионизации, относительная электроотрицательность (оэо), сродство атома элемента к электрону и их зависимость от радиуса атома. Атомные и ионные радиусы.
- •Горизонтальные строчки Периодической таблицы называются периодами, а вертикальные - группами.
- •Номер периода, в котором находится элемент, совпадает с номером его валентной оболочки. Эта валентная оболочка постепенно заполняется от начала к концу периода.
- •13.Химическая связь. Параметры химической связи: энергия связи, длина связи, валентный угол.
- •14. Ковалентная связь. Метод валентных связей (мвс). Полярная и неполярная ковалентная связь. Механизмы образования (обменный, донорно-акцепторный)
- •15.Свойства ковалентной связи: длина, насыщаемость, направленность. Диполь, дипольный момент.
- •18.Энергетические схемы образования молекул из одинаковых атомов (гомоядерные) и разных атомов (гетероядерные) на примере νо, со, о2, f2.
- •19.Сравнение мвс и ммо (двухцентровые и многоцентровые связи)
- •20.Ионная связь. Поляризация и поляризующая способность ионов. Механизм образования, свойства. Водородная и металлическая связь.
- •28.Смещение химического равновесия. Принцип Ле- Шателье. Закон Вант-Гоффа (уравнение, выражающее зависимость температуры от энтальпии)
- •33.Учение о растворах. Общие свойства растворов. Классификация дисперсных систем. Истинные растворы. Концентрации растворов.
- •34.Способы выражения концентрации растворов: молярная, моляльная, нормальная, процентная, мольная доля.
- •35.Коллигативные свойства разбавленных растворов (осмос осмотическое давление, диффузия, закон Вант-Гоффа, законы Рауля.).
- •38.Электролитическая диссоциация. Элементы теории растворов электролитов. Сильные и слабые электролиты. Классификация электролитов по степени диссоциации.
- •39.Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель. Произведение растворимости. Произведение растворимости
- •40. Гидролиз. Гидролиз солей. Реакция среды. Степень и константа гидролиз
- •41.Ряд напряжений металлов.
- •42. Электролиз. Законы Фарадея. Функции катода и анода при электролизе, факторы
- •43. Классификация окислительною - восстановителя реакций. Окислители и восстановители. Степень окисления, валентность.
- •44.Термодинамика. Основные задачи химической термодинамики. Основы биоэнергетики. Система и ее окружение (открытая, закрытая и изолированная система).
- •45.Состояние системы. Параметры состояния, уравнения состояния. Термодинамические функции (функции состояния, функции процесса). Первое начало термодинамики..
- •46.Термодинамические процессы: изохорный, изобарный (энтальпия), изотермический, адиабатный, термодинамические обратимые и необратимые процессы.
- •48.Связь между ∆ğ и Кр.. Энергия Гиббса, энтальпия, энтропия.
- •1. Основные понятия и определения; Атом. Молекула. Химический элемент.
- •2.Основные стехиометрические законы: Сохранение веса, постоянства состава, кратных отношений. Эквивалент. Закон эквивалентов. Химические эквиваленты простых и сложных веществ (примеры).
- •3.Основные газовые законы: Гей-Люссака, Авогадро и следствия из него. Молярный объем и молярная масса газа. Объединенный газовый закон. Уравнение Менделеева-Клапейрона.
- •1. Основные понятия и определения; Атом. Молекула. Химический элемент.
- •2.Основные стехиометрические законы: Сохранение веса, постоянства состава, кратных отношений. Эквивалент. Закон эквивалентов. Химические эквиваленты простых и сложных веществ (примеры).
- •3.Основные газовые законы: Гей-Люссака, Авогадро и следствия из него. Молярный объем и молярная масса газа. Объединенный газовый закон. Уравнение Менделеева-Клапейрона.
11.Периодический закон и периодическая система элементов д.И.Менделеева принцип построения группы, периода. Ś-,р-,đ- f- блоки элементов. Их расположение в периодической системе.
12.Важнейшие характеристики элемента: энергия ионизации, относительная электроотрицательность (оэо), сродство атома элемента к электрону и их зависимость от радиуса атома. Атомные и ионные радиусы.
Д.И.Менделеев считал, что основной характеристикой элементов являются их атомные веса, и в 1869 г. впервые сформулировал периодический закон:
Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.
Данные о строении ядра и о распределении электронов в атомах позволяют по-новому рассмотреть периодический закон и периодическую систему элементов. На базе современных представлений периодический закон формулируется так:
Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома (порядкового номера)
Периодическая таблица элементов является графическим выражением Периодического закона. Существует несколько форм Периодической таблицы.
Горизонтальные строчки Периодической таблицы называются периодами, а вертикальные - группами.
В группах собраны элементы с похожими химическими свойствами, а в периодах химические свойства постепенно изменяются.
Если сравнить между собой элементы разных периодов, то можно отметить важную особенность:
Номер периода, в котором находится элемент, совпадает с номером его валентной оболочки. Эта валентная оболочка постепенно заполняется от начала к концу периода.
В этом заключается физический и химический смысл номера периода. Как же изменяются свойства элементов одного периода?
В левой части периодов элементы проявляют ярко выраженные восстановительные свойства. Большинство из этих элементов являются металлами (Li, Na, Mg, Ca).
В правой части собраны типичные неметаллы, обладающие окислительными свойствами (O, F, Cl).
В середине периодов располагаются элементы, обладающие как восстановительными, так и окислительными свойствами. Эти окислительные или восстановительные свойства зависят от того, с каким элементом они реагируют.
Каждый период Периодической таблицы начинается активным металлом и заканчивается инертным газом.
Номер группы совпадает с числом валентных электронов, которые могут участвовать в образовании химических связей.
Поэтому номер группы часто совпадает с валентностью элементов. Например, номер группы совпадает с валентностью s-элементов и с наибольшей возможной валентностью p-элементов. В этом заключается физический смысл номера группы.
Заряд ядра Z совпадает с ПОРЯДКОВЫМ НОМЕРОМ элемента в Периодической таблице.
Свойства элементов периодически изменяются в соответствии с их атомным весом.
Элементы побочных подгрупп (d-элементы) называют ПЕРЕХОДНЫМИ элементами или переходными металлами (все d-элементы - металлы).Термин “переходные металлы” возник вследствие того, что все d-элементы в периодах служат как бы “переходным мостиком” от металлических s-элементов к p-элементам, среди которых уже много неметаллов.
Все элементы разделяются на 4 электронных семейства.
1.s-элементы – это элементы в атомах которых последним заполняется s – подуровень внешнего электронного слоя. Первые два элемента каждого периода. Они составляют главные подгруппы 1 и 2 групп.
2.р- элементы – это элементы в атомах которых последним заполняется р –подуровень внешнего электронного слоя. Р – элементы составляют главные подгруппы 3-8 групп.
3.d- элементы – это элементы, в атомах которых последним заполняется d- подуровень предвнешнего электронного слоя. Это элементы побочных подгрупп всех восьми групп.
4.f- элементы – это элементы в атомах которых последним заполняется f- подуровень третьего снаружи электронного слоя. Это элементы располагающиеся в нижней части периодической системы лантаноиды и актиноиды.
Валентные электроны – это электроны. Которые могут участвовать в образовании химических связей.
В атомах s- и р- элементов валентными являются, все электроны внешнего слоя.
В атомах d – элементов валентными являются электроны s- и d- подуровней.
В атомах f – элементов валентными являются электроны s- и f- подуровней.
Такие свойства атомов, как их размер, энергия ионизации, сродство к электрону, электроотрицательности, степень окисления связаны с электронной конфигурацией атома. В их изменении с увеличением порядкового номера элемента наблюдается периодичность.
Атомы не имеют строго определенных границ , что обусловлено волновой природой электронов. В расчетах пользуются так называемыми эффективными и кажущимися радиусами, т.е. радиусом шарообразных атомов, сближенных между собой при образовании кристалла. Обычно их рассчитывают из рентгенометрических данных.
Радиус атома- расстояние от ядра атома до максимума электронной плотности его валентных электронов. Чем больше атомный радиус, тем слабее удерживаются внешние электроны. И, наоборот, с уменьшением атомного радиуса электрона притягиваются к ядру сильнее.
Атомы. Лишившиеся одного или нескольких электронов, становятся заряженными положительно, т.к. заряд ядра атома превышает сумму зарядов оставшихся электронов. Атомы, присоединяющие к себе лишние электроны, заряжаются отрицательно. Образующиеся заряженные частицы называются ионами. Потеря атомом электронов приводит к уменьшению его эффективных размеров, а присоединение избыточных электронов – к увеличению Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного иона (аниона) всегда больше радиуса соответствующего электронейтрального атома:
r аниона > r ат.> rкатиона
Энергия ионизации – это энергия, необходимая для отрыва наиболее слабо связанного электрона от атома. Она обычно выражается в электрон-вольтах. При отрыве электрона от атома образуется соответствующий катион.
Потенциал ионизации- наименьшее напряжение поля, при котором скорость электронов становится достаточной для ионизации атомов. Выражается в вольтах
Энергия ионизации, выраженная в электронвольтах, численно равна потенциалу ионизации, выраженному в вольтах.
Электроотрицательность характеризует способность атомов притягивать к себе электроны, которые участвуют в образовании химических связей с другими атомами в молекуле.
Металличность – это способность атомов элемента отдавать электроны.
Неметалличность – это способность атомов элемента присоединять электроны.
Чем больше металличность, тем меньше ЭО.
Чем больше неметалличность, тем больше ЭО.
Количественной характеристикой неметаличности является сродство к электрону.
Сродство к электрону – это энергия, которая выделяется при присоединении электрона к нейтральному атому т.е. при превращении атома в отрицательно заряженный ион:
Э0 + е = Э- + Еср.
Чем больше сродство к электрону, тем легче атом присоединяет электрон, тем, сильнее неметаллические свойства элемента.