Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция. Качественный анализ.docx
Скачиваний:
39
Добавлен:
11.07.2021
Размер:
156.95 Кб
Скачать

Прямые методы анализа

Прямые методы определения элементов не предусматривают какой-либо химической обработки проб и поэтому сокращают время анализа. Прямые методы используют физические методы анализа без разрушения вещества. Достаточно иметь небольшую навеску ( 0,1 - 1 мг) и ее возбуждать. Возбужденные атомы и молекулы вещества дают излучение, которое с помощью прибора разлагается в спектр. Спектр - это упорядоченное по длинам волн излучение. При этом используются рентгеновский или спектральный эмиссионный методы.

Спектральный эмиссионный метод пригоден для анализа любых образцов. В этом методе атомы и молекулы возбуждаются пламенем горелки, электрической дугой и искрой, т.е. происходит излучение света под действием высокой температуры. Температура в пламени 2000 - 30000С, 3000 - 70000С - в дуге и несколько десятков тысяч градусов в искре. Полученное таким образом излучение разлагается в спектр призмой или дифракционной решеткой спектрального прибора и регистрируется фотопластиной или фотоустройством. Известны три типа эмиссионных спектров: линейчатые - испускаются атомами и ионами раскаленных газов и паров, полосатые -возникают при излучении света раскаленными парами молекул, непрерывные - испускаются раскаленными жидкими и твердыми телами. Фотоэлектрический спектрограф - квантометр позволяет за 5 - 6 минут выполнить полный качественный анализ на 10 - 12 элементов. Метод имеет свои достоинства и трудности в подборе эталонов.

Рентгеновская спектроскопия изучает спектры испускания (эмиссионные рентгеновские спектры ) и поглощения ( абсорбционные рентгеновские спектры ). Рентгеноспектральный анализ обладает меньшей чувствительностью, но рентгеновские спектры более точны, чем эмиссионные.

Люминесцентный метод применим в тех случаях , когда образцы проявляют способность к флуоресценции.

Непрямые методы анализа

При использовании непрямых методов анализа (или методов с разложением вещества ) нужно перевести минерал в растворимое состояние, чтобы определить какие катионы и анионы входят в его состав. Имеет место растворение (разложение) пробы минерала. Разложение пробы растворением в жидкости (в жидких растворителях ), сплавлением с твердым реагентом (плавнем). Растворение может проходить без химических реакций и с участием химических реакций, с изменением степеней окисления и без изменения степеней окисления. Растворение может быть кислотное и бескислотное.

Аппаратура, химическая посуда, материалы

В зависимости от способа растворения и природы минерала используют химические стаканы и часовые стекла, чашки (платиновые, фарфоровые, кварцевые), тигли (фарфоровые, кварцевые, графитовые, металлические - никелевые, железные, танталовые, платиновые). Автоклавы. Запаянные трубки.

Посуду изготавливают из специальных сортов стекла, которое должно быть термостойким и химически стойким.

Подготовка образца к анализу

  1. Визуальное рассмотрение образца.

  2. Подготовка пробы образца. Если образец представляет собой большой кусок, то от него следует молотком отколоть небольшие кусочки. Затем следует растереть образец в ступке с помощью пестика. В зависимости от твердости образца используют ступки из разных материалов ( сталь, агат, яшма, фарфор). Образец тщательно измельчают. Растертая проба не должна содержать крупных частиц. Взять примерно 1 г тонкого порошка (пудры) для анализа. Чем мельче проба, тем быстрее она растворится.

3. Отбор средней пробы. Необходимо всегда проводить отбор средней пробы, так как состав одного куска минерала отличается от состава другого. Существует несколько способов отбора средней пробы. Один из них: весь порошок минерала насыпать на лист плотной бумаги и после тщательного перемешивания шпателем распределить в виде прямоугольника высотой 0,5-0,6 см. Провести ряд продольных и поперечных линий:

*

*

*

*

*

*

Отобрать из центров полученных квадратов (пропуская один) некоторое количество порошка. Место отбора показано звездочками. Полученную среднюю пробу использовать для анализа.

4. Предварительное испытание на окраску пламени. Пирохимический анализ.

Пирохимический анализ используется как предварительные проверочные реакции при анализе сухих веществ. Небольшое количество порошка минерала смочите 2-3 каплями концентрированной HCl, внесите его на чистой нихромовой проволоке в бесцветное пламя горелки и наблюдайте окраску пламени. Летучие соли многих металлов окрашивают пламя в различные цвета.

5. Растворение в жидкостях.

При растворении проб в жидкостях обычно используют стеклянные химические стаканы или конические колбы Эрленмейера. Если при растворении появляется пена или возможно разбрызгивание, то удобно применять грушевидные колбы Кьельдаля с длинным горлом. Если при обработке пробы кислотами выделяются пары или газы, неиспользуемые в дальнейшем, то их удаляют, для чего над реакционной колбой помещают стеклянный колпак, который подсоединяют к водоструйному насосу.

Если при растворении пробы выделяются пузырьки газа или пробу растворяют при кипячении, то всегда возможно разбрызгивание раствора. Потери при этом зависят от условий растворения, размера и формы сосуда. Потери уменьшаются при растворении в стакане, закрытым часовым стеклом. Потери возможны при резком вскипании при нагревании или выпаривании растворов. Для предотвращения вскипания раствор перемешивают или в него вносят кусочки пористого материала ( битого фарфора, обожженной глины, пемзы и др.) или стеклянные капилляры, запаянные с одного конца.

Возможные потери летучих соединений : галогеноводородные кислоты (HCl, HI) ; в виде простых веществ H2, O2, N2, Cl2, Br2, I2, Hg; в виде гидридов C (CH4), Si (SiH4), N (NH3), P, As , Sb; S (H2S), Se,Te; в виде оксидов : C (CO2), S (SO2), N (NO, NO2). Эти потери можно предотвратить различными способами. Например, проводить разложение с обратным холодильником. При этом летучие соединения возвращаются с растворителем или вообще не испаряются. Но все это не устраняет потери вещества.