Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 курс летняя сессия / Ответы №1-1.docx
Скачиваний:
9
Добавлен:
06.07.2021
Размер:
260.21 Кб
Скачать

15.Абсолютно чёрное тело. Законы его излучения. Оптическая пирометрия.

Абсолютно черное тело – тело, которое полностью поглощает электромагнитные волны любых частот, т.е. все лучи, падающие на тело и ничего не отражает. Поглощая энергию, абсолютно чёрное тело нагревается и само начинает излучать. Примеры: сажа, черный бархат, платиновая чернь, Солнце. Модель а.ч.т.: непрозрачный ящик с небольшим отверстием. (днем окна домов кажутся темными).

1.Закон Стефана — Больцмана: Мощность излучения абсолютно чёрного тела прямопропорциональна площади поверхности и четвёртой степени температуры тела:

P = SεσT4, где ε - степень черноты (для всех веществ ε < 1, для абсолютно черного тела ε = 1).

σ (сигма) –постоянная Стефана — Больцмана= 5,67 Вт/(м24)

2.Закон смещения Вина Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина: ms = 2,9 / T. С увеличением ms уменьшается, что и следует из закона. Пользуясь законом смещения Вина, можно измерять высокие тел на расстоянии, например, расплавленных , космических тел и др.

3. Закон Планка. Интенсивности излучения абсолютно черного тела зависят от и длины волны. По мере увеличения длины волны энергия лучей возрастает, при некоторой длине волны достигает максимума, затем убывает. Кроме того, для луча одной и той же длины волны энергия его увеличивается с возрастанием тела, испускающего лучи

4. Закон Кирхгофа. Для всякого тела излучательная и поглощательная способности зависят от и длины волны. Из закона Кирхгофа следует, что если тело обладает малой поглощательной способностью, то оно одновременно обладает и малой лучеиспускательной способностью (полированные ). Абсолютно черное тело, обладающее максимальной поглощательной способностью, имеет и наибольшую излучательную способность. "Ультрафиолетовая катастрофа" в конце XIX в. сводилась к  парадоксальному результату, согласно которому никакое тепловое равновесие невозможно, так как вся энергия системы будет постепенно передаваться электромагнитным колебаниям все более высоких частот.  Немецкий физик М.Планк в 1900 г. предположил, что энергия излучается порциями – квантами (гипотеза Планка). Каждое тело, обладающее тепловой энергией для излучения, должно излучать её практически полностью в ультрафиолетовом спектре и выше

Оптические. Позволяют визуально определять, как правило, без использования специальных устройств, температуру нагретого тела, путем сравнения его цвета с цветом эталонной нити.

Оптическая пирометрия основывается на зависимости спектральной характеристики излучения от температуры в диапазонах инфракрасного излучения и видимого света, другими словами, на зависимости цвета излучения от температуры. Так, тела, нагретые до 700-800° С, испускают темно-оранжевое свечение, при температуре около 1000° С цвет становится ярко-оранжевым, при 2000° — ярко-желтым, а при 2500° С — практически белым. Известно два основных типа оптических пирометров:

  • Яркостный пирометр определяет температуру тела путем визуального сравнения излучения объекта в видимом спектре с излучением эталонной нити. Оператор смотрит в окуляр на измеряемый объект и регулирует величину пропускаемого через нить электрического тока, при этом нить в окуляре совмещается с изображением объекта. Как только получается подобрать такое значение, при котором цвет нити совпадает с цветом объекта, изображение нити как бы "растворяется" на фоне объекта (отсюда другое название яркостного пирометра — пирометры с исчезающей нитью). По величине тока определяется температура измеряемого объекта.

  • Пирометр спектрального отношения сравнивает энергетические яркости объекта в разных областях спектра. Такой пирометр использует несколько датчиков (на практике чаще всего пару) и измеряет энергетические яркости в разных частях спектра, а затем оценивает их отношение (отсюда другое название — пирометр спектрального отношения). Мультиспектральные пирометры обладают большей точностью в сравнении с яркостными, поэтому в настоящее время используются преимущественно оптические пирометры данного типа.

Соседние файлы в папке 2 курс летняя сессия