- •1.Волновое уравнение электромагнитной волны, решение волнового уравнения. Амплитуда, частота, волновой фронт, поляризация и энергия электромагнитной волны.
- •2. Когерентность и интерференция световых волн.
- •3. Интерферционные полосы, методы наблюдения интерферционных полос. Применение интерференции.
- •4. Полосы равной толщины и полосы равного наклона.
- •5. Дифракция света. Дифракция сферической волны на круглом отверстии. Зоны Френеля.
- •6. Дифракция плоской волны на щели. Работа дифракционной решётки.
- •7. Взаимодействие света с веществом. Фазовая скорость, показатель преломления и дисперсия (нормальная) вещества.
- •8. Преломление и отражение света на границе двух сред. Интерферения поляризованных лучей.
- •9. Амплитудный и энергетический коэффициент отражения . Зависимость коэффициента отражения от угла падения. Угол Брюстера.
- •10.Поляризация света .Поляризация при отражении и преломлении света.
- •11.Закон Малюса. Степень поляризации света.
- •12.Основные фотометрические величины. Поглощение света веществом.
- •2. Световые величины.
- •13.Оптические постоянные вещества в области полос поглощения. Аномальная дисперсия.
- •14. Тепловое излучение и его характеристики. Закон Киргофа.
- •15.Абсолютно чёрное тело. Законы его излучения. Оптическая пирометрия.
- •16.Квантовая природа излучения . Квант энергии электромагнитного излучения.
- •17.Фотон, масса и импульс фотона.
- •18.Эффект Комптона, внешний и внутренний фотоэффект. Закон сохранения энергии и импульса при взаимодействии фотона с веществом.
- •19.Корпускулярно волновые свойства микрочастиц,волны де-Бройля.
- •20.Масса и энергия релятивистских частиц.Соотношение неопределенностей.
- •21.Волновая функция.Принцип суперпозиции. Уравнение Шредингера для станционарных состояний
- •22.Энергетические уровни,волновые функции и квантовые числа атомов на примере атома водорода
- •23.Спектральные серии излучения атома водорода. Правила отбора для дипольных переходов.
- •24.Магнитный момент атома,его связь с орбитальным моментом. Опыты Штерна и Герлаха. Спин элетрона
- •25. Физические основы работы лазеров
- •26. Основы зонной теории твердых тел( металлы, полупроводники и диэлектрики). Собственные и примесные полупроводники.
- •27. Строение и общие свойства атомного ядра.
- •28. Энергия связи атомных ядер и принцип получения ядерной энергии
- •29. Радиоактивность. Закон радиактивногораспада. Альфа, бета-распады, гамма излучение.
- •31.Деление атомных ядер. Термоядерные реакции.
4. Полосы равной толщины и полосы равного наклона.
ПОЛОСЫ РАВНОЙ ТОЛЩИНЫ
интерференц. полосы, наблюдаемые при освещении тонких оптически прозрачных слоев (плёнок)переменной толщины пучком параллельных лучей и обрисовывающие линии равной оптической толщины.
ПОЛОСЫ РАВНОГО НАКЛОНА
чередующиеся тёмные и светлые полосы (интерференционные полосы), возникающие при падении светана плоскопараллельную пластину в результате интерференции лучей, отражённых от верхней и нижней еёповерхностей и выходящих параллельно друг другу.
5. Дифракция света. Дифракция сферической волны на круглом отверстии. Зоны Френеля.
Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле - любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает.
Дифракция на круглом отверстии. Сферическая волна, распространяющаяся из точечного источника 5, встречает на своем пути экран с круглым отверстием. Дифракционную картину наблюдаем на экране (Э) в точке В, лежащей на линии, соединяющей S с центром отверстия (рис. 259). Экран параллелен плоскости отверстия и находится от него на расстоянии b. Разобьем открытую часть волновой поверхности Ф на зоны Френеля. Вид дифракционной картины зависит от числа зон Френеля, укладывающихся в отверстии. Амплитуда результирующего колебания, возбуждаемого в точкеВ всеми зонами,
А=А1/2±Аm/2,
где знак плюс соответствует нечетным т и минус — четным от.
Когда отверстие открывает нечетное число зон Френеля, то амплитуда (интенсивность) в точке В будет больше, чем при свободном распространении волны, если четное, то амплитуда (интенсивность) будет равна нулю. Если в отверстие укладывается одна зона Френеля, то в точке В амплитуда А=А1, т. е. вдвое больше, чем в отсутствие непрозрачного экрана с отверстием (см. §177). Интенсивность света больше соответственно в четыре раза. Если в отверстии укладываются две зоны Френеля, то их действия в точке Впрактически уничтожат друг друга из-за интерференции. Таким образом, дифракционная картина от круглого отверстия вблизи точки В будет иметь вид чередующихся темных и светлых колец с центрами в точке В (если т четное, то в центре будет темное кольцо, если т нечетное — то светлое кольцо), причем интенсивность максимумов убывает с расстоянием от центра картины.
Расчет амплитуды результирующего колебания на внеосевых участках экрана более сложен, так как соответствующие им зоны Френеля частично перекрываются непрозрачным экраном. Если отверстие освещается не монохроматическим, а белым светом, то кольца окрашены.
Число зон Френеля, укладывающихся в отверстии, зависит от его диаметра. Если он большой, то Am<<A1 и результирующая амплитуда А=А1/2, т. е. такая же, как и при полностью открытом волновом фронте. Никакой дифракционной картины не наблюдается, свет распространяется, как
и в отсутствие круглого отверстия, прямолинейно.
Зоны Френеля, участки, на которые можно разбить поверхность световой (или звуковой) волны для вычисления результатов дифракции света (или звука)