- •1.Волновое уравнение электромагнитной волны, решение волнового уравнения. Амплитуда, частота, волновой фронт, поляризация и энергия электромагнитной волны.
- •2. Когерентность и интерференция световых волн.
- •3. Интерферционные полосы, методы наблюдения интерферционных полос. Применение интерференции.
- •4. Полосы равной толщины и полосы равного наклона.
- •5. Дифракция света. Дифракция сферической волны на круглом отверстии. Зоны Френеля.
- •6. Дифракция плоской волны на щели. Работа дифракционной решётки.
- •7. Взаимодействие света с веществом. Фазовая скорость, показатель преломления и дисперсия (нормальная) вещества.
- •8. Преломление и отражение света на границе двух сред. Интерферения поляризованных лучей.
- •9. Амплитудный и энергетический коэффициент отражения . Зависимость коэффициента отражения от угла падения. Угол Брюстера.
- •10.Поляризация света .Поляризация при отражении и преломлении света.
- •11.Закон Малюса. Степень поляризации света.
- •12.Основные фотометрические величины. Поглощение света веществом.
- •2. Световые величины.
- •13.Оптические постоянные вещества в области полос поглощения. Аномальная дисперсия.
- •14. Тепловое излучение и его характеристики. Закон Киргофа.
- •15.Абсолютно чёрное тело. Законы его излучения. Оптическая пирометрия.
- •16.Квантовая природа излучения . Квант энергии электромагнитного излучения.
- •17.Фотон, масса и импульс фотона.
- •18.Эффект Комптона, внешний и внутренний фотоэффект. Закон сохранения энергии и импульса при взаимодействии фотона с веществом.
- •19.Корпускулярно волновые свойства микрочастиц,волны де-Бройля.
- •20.Масса и энергия релятивистских частиц.Соотношение неопределенностей.
- •21.Волновая функция.Принцип суперпозиции. Уравнение Шредингера для станционарных состояний
- •22.Энергетические уровни,волновые функции и квантовые числа атомов на примере атома водорода
- •23.Спектральные серии излучения атома водорода. Правила отбора для дипольных переходов.
- •24.Магнитный момент атома,его связь с орбитальным моментом. Опыты Штерна и Герлаха. Спин элетрона
- •25. Физические основы работы лазеров
- •26. Основы зонной теории твердых тел( металлы, полупроводники и диэлектрики). Собственные и примесные полупроводники.
- •27. Строение и общие свойства атомного ядра.
- •28. Энергия связи атомных ядер и принцип получения ядерной энергии
- •29. Радиоактивность. Закон радиактивногораспада. Альфа, бета-распады, гамма излучение.
- •31.Деление атомных ядер. Термоядерные реакции.
29. Радиоактивность. Закон радиактивногораспада. Альфа, бета-распады, гамма излучение.
Радиоактивный распад -спонтанное изменение состава (заряда Z, массового числаA) или внутреннего строения нестабильных атомных ядер путём испускания элементарных частиц, гамма-квантов и/или ядерных фрагментов[1]. Процесс радиоактивного распада также называют радиоакти́вностью, а соответствующие ядра (нуклиды, изотопы и химические элементы) радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.
Альфа-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4He).
Альфа-распад, как правило, происходит в тяжёлых ядрах с массовым числом А ≥ 140 (хотя есть несколько исключений). Внутри тяжёлых ядер за счёт свойства насыщения ядерных сил образуются обособленные α-частицы, состоящие из двух протонов и двух нейтронов. Образовавшаяся α-частица подвержена большему действию кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Одновременно α-частица испытывает меньшее ядерное притяжение к нуклонам ядра, чем остальные нуклоны. Образовавшаяся альфа-частица на границе ядра отражается от потенциального барьера внутрь, однако с некоторой вероятностью она может преодолеть его и вылететь наружу. С уменьшением энергии альфа-частицы проницаемость потенциального барьера очень быстро (экспоненциально) уменьшается, поэтому время жизни ядер с меньшей доступной энергией альфа-распада при прочих равных условиях больше.
Бета-распад
Явление бета-распада состоит в том, что ядра некоторых элементов самопроизвольно испускаютэлектроны и элементарную частицу очень малой массы - антинейтрино. Так как электронов в ядрах нет, то появление бета-лучей из ядра атома можно объяснить способностью нейтронов ядра распадаться на протон, электрон и антинейтрино. Появившийся протон переходит во вновь образующееся ядро. Электрон, вылетающий из ядра, и является частицей бета-излучения. Такой процесс распада нейтронов характерен для ядер с большим количеством нейтронов.
Гаммараспад - В процессе радиоактивного излучения ядра атомов могут испускать гамма-кванты. Испускание гамма-квантов не сопровождается распадом ядра атома. Гамма излучение зачастую сопровождает явления альфа- или бета-распада. При альфа- и бета-распаде новое возникшее ядро первоначально находится в возбужденном состоянии и , когда оно переходит в нормальное состояние, то испускает гамма-кванты (в оптическом или рентгеновском диапазоне волн).
ЗАКОН РАДИОАКТИВНОГО РАСПАДА
— экспоненциальный закон убывания числа атомных ядеррадиоактивного элемента со временем. Выражается формулой N = N0e-λt, где N0 — число атомов данногорадиоактивного элемента в любой, произвольно принятый за нулевой момент времени; N — число атомовэтого элемента, не распавшихся по прошествии интервала времени t; λ — постоянная распада данногорадиоактивного элемента; е — основание натуральных логарифмов З. р. р. выполняется толькостатистически, для очень большого числа распадающихся атомов; т. о., его можно интерпретировать каквероятностный закон.
30.Ядерные реакции - это искусственные превращения атомных ядер, вызванные их взаимодействием с частицами ( протонами, нейтронами, альфа-частицами, гамма-частицами) или другими ядрами. Условие, когда протекание ядерной реакции становится возможным: - когда ядро и частица (или другое ядро) сближаются на расстояния, при которых начинают действовать ядерные силы. Так как в реакцию могут вступать ядро и положительно заряженная частица (протон), то необходимо преодолеть возникающие между ними силы отталкивания. Это возможно при больших скоростях частиц. Такие скорости достигаются в ускорителях элементарных частиц. Источниками заряженных частиц для проведения ядерных реакций могут быть: - естественные радиоактивные элементы - ускорители элементарных частиц - космическое излучение. Превращения ядер сопровождается изменением их внутренней энергии (энергии связи). Разность сумм энергии покоя ядер и частиц до реакции и после реакции называется энергетическим выходом ядерной реакции.