- •I. Химия белка
- •Функции белков:
- •5. Классификация и характеристика простых белков (альбумины, глобулины, гистоны, протамины, протеиноиды).
- •1. Альбумины
- •2. Глобулины
- •3.Гистоны
- •4.Протамины
- •5.Протеноиды
- •6. Классификация и характеристика сложных белков (липопротсины, хром-мопротеины, нуклеопротеины, гликопротеины, фосфопротеины).
- •II. Ферменты. Витамины.
- •7. Химическая природа ферментов, Активный и аллостерический центры фермента, их роль.
- •8. Виды специфичности ферментов. Основные пути активации и ингибирования ферментативной активности.
- •9. Мультиферментные комплексы и изоферменты. Клиническое значение определения активности изоферментов. Энзимодиагностика. Ферментативные лекарственные препараты.
- •1. Зависимость скорости реакции от температуры
- •2. Зависимость скорости реакции от рН
- •3. Зависимость скорости реакции от концентрации субстрата
- •4. Зависимость от концентрации фермента
- •11. Классификация ферментов. Общая характеристика класса оксидоредуктаз. Основные подклассы. Коферменты оксидоредуктазных реакций.
- •Характеристика фермента
- •12. Классификация ферментов. Общая характеристика класса трансфераз. Основные подклассы. Коферменты трансферазных реакций.
- •13. Классификация ферментов. Общая характеристика гидролаз. Основные подклассы гидролаз.
- •14. Классификация ферментов. Общая характеристика класса лиаз. Коферменты лиазных реакций.
- •15. Классификация ферментов. Общая характеристика изомераз и лигаз. Коферменты изомеразных или глазных реакций.
- •16. Классификация витаминов. Причины развития витаминной недостаточности в организме человека. Авитаминозы, гиповитаминозы, гипервитаминозы, Антивитамины.
- •17. Витамин в1, его химическая структура, признаки витаминной недостаточности. Нарушение углеводного обмена при - витаминной недостаточности.
- •18. Витамины pp и в2, их структура, участие в обмене веществ, признаки витаминной недостаточности.
- •19. Витамины с и р, их структура, признаки витаминной недостаточности и влияние на обмен веществ.
- •20. Витамин биотин, их структура, признаки витаминной недостаточности и участие в обмене веществ.
- •21. Витамин b12, и фолиевая кислота, участие в обмене веществ и признаки витаминной недостаточности.
- •22. Витамины а, е, к. Признаки витаминной недостаточности, участие в обмене веществ.
- •23. Витамин d, химическая природа витамина, гормонально-активные формы, участие витамина в обмене веществ. Рахит. Основные пути метаболизма. БиоэнергетическиЙ обмен.
- •24. Понятие об обмене веществ. Катаболизм и анаболизм, их характеристика и взаимосвязь. Виды метаболических путей. Центральные метаболиты.
- •26. Дыхательная цепь. Ферментные комплексы дыхательной цепи, их локализация. Редокс - потенциалы ферментных систем. Ингибиторы переноса электронов.
- •27. Окислительное фосфорилирование. Значение и механизм процесса. Расообщение дыхания и фосфорилирования. Свободное окисление. Субстратное фосфорилирование.
- •28. Свободнорадикальное окисление. Понятие о перекисном окислении липидов.
- •29. Антиоксидантная система организма. Неферментативные антиоксиданты. Антиоксидантные ферменты.
- •IV. Обмен углеводов.
- •30. Классификация и химическая структура углеводов, их роль в обеспечении жизнедеятельности организма. Переваривание и всасывание углеводов в пищеварительном тракте. Мальабсорбция.
- •32. Структура гликогена и его синтез в клетках печени и мышц. Функциональные отличия гликогена этих тканей. Распад гликогена. Гликогенозы.
- •33. Гликолиз. Биологическое значение, химизм процесса. Необратимые этапы и ключевые ферменты гликолиза. Биоэнергетика и регуляция этого процесса. Эффект Пастера.
- •II этап - окислительное декарбоксилирование пвк
- •III этап - Цикл Кребса
- •35. Апотомический путь обмена глюкозы (пентозный цикл). Окислительная и неокислительная ветви процесса. Биологическое значение пентозного цикла.
- •36. Глюконеогенез. Основные субстраты и ключевые ферменты процесса. Цикл Кори.
- •38. Патология углеводного обмена. Сахарный диабет. Нарушения углеводного и липидного обменов при этом заболевании.
- •V. Обмен липидов
- •39. Классификация и химическая структура липидов. Роль липидов в обеспечении жизнедеятельности организма.
- •40. Биологические мембраны, их структурные компоненты. Функции биологических мембран.
- •41. Холестерин, его биосинтез и биологическая роль. Гиперхолестеринемия. Атеросклероз. Роль липопротеинов в обмене холестерина.
- •1)Наследственная.
- •42. Классификация и химическая структура фосфолипидов. Биологическая роль, переваривание, биосинтез и распад фосфолипидов. Липотропные вещества.
- •43. Переваривание и всасывание липидов, роль желчи в этом процессе. Желчные кислоты. Ресинтез липидов в клетке эпителия кишечника. Транспортные формы липидов. Биологическая роль жировых депо.
- •44. Липолиз триглицеридов в тканях. Окисление глицерина. Биоэнергетика процесса.
- •45. Окисление жирных кислот. Внутриклеточная локализация и биоэнергетика процесса. Особенности обмена жирных кислот с нечетным количеством углеродных атомов и ненасыщенных жирных кислот.
- •46. Синтез жирных кислот. Внутриклеточная локализация, ферменты и коферменты процесса. Биосинтез триглицеридов.
- •47. Образование и распад кетоновых тел. Кетогенез в норме и при патологии.
- •48. Гормональная регуляция липидного обмена. Патология липидного обмена: гиперлипидемии, липоидозы, жировое перерождение печени, ожирение, атеросклероз.
- •3. Конденсация йодтирозинов
- •1. Аминокислоты и их производные:
- •2. Пептиды
9. Мультиферментные комплексы и изоферменты. Клиническое значение определения активности изоферментов. Энзимодиагностика. Ферментативные лекарственные препараты.
Мультиферментный комплекс - это комплекс, в котором принимают участие несколько ферментов, при этом продукт предшествующей реакции является субстратом следующей реакции.
Пример: - дыхательная цепь; - гликолиз; - пируватдегидрогеназы; - синтетаза жирных кислот.
Изоферменты - множественные молекулярные формы данной особи, катализирующие одну и туже реакцию, но отличающиеся друг от друга по физическим и химическим свойствам и разделяющиеся с помощью физико-химических методов. Те самые свойства: электрофоретические свойства, адсорбционные свойства, оптимум рН, термостабильность, чувствительность к ингибиторам, сродство к субстрату, небольшие различие в первичной структуре.
Примером фермента, имеющего изоферменты, является гексокиназа, имеющая четыре изотипа, обозначаемых римскими цифрами от I до IV. При этом гексокиназа IV, экспрессируется почти исключительно в печени и обладает особыми физиологическими свойствами (в печени эмбриона – ГК1, а в печени взрослого – ГК3 и ГК4). Ещё одним примером фермента, имеющего изоферменты, является амилаза — панкреатическая амилаза отличается по аминокислотной последовательности и свойствам от амилазы слюнных желёз, кишечника и других органов. Третий пример фермента, креатинфосфокиназа — изотип этого фермента, экспрессируемый в сердце, отличается от креатинфосфокиназы скелетных мышц
Энзимодиагностика - определение активности фермента.
Изоферменты ЛДГ органоспецифичны
ЛДГ5 - характерен для ткани, в которой анаэробные процессы.
ЛДГ1 - для ткани, в которой аэробные процессы.
В инфаркте миокарда кровь из сердца выходит с ЛДГ1, ЛДГ2, при заболеваниях печени - ЛДГ4, ЛДГ5, при патологиях лёгких ЛДГ3.
Органоспецифичные аминотранферазы АЛТ и АСТ
АЛТ- аланинаминотрансфераза. Катализирует реакцию трансаминирования между аланинои и альфа-кетоглутаратом.
Локализован этот фермент в цитозоле клеток многих органов, но наибольшая концентрация его в клетках печени и сердечной мышцы.
АСТ- аспартатаминотрансфераза. Катализирует реакцию трансаминирования между аспартатом и альфа-кетоглутаратом. В результате образуютсяся оксалоацетат и глутамат. Имеет двойную локализацию (митохондрии и цитоплазма). Наибольшее количество в клетках печени и сердечной мышцы.
Соотношение АСТ/АЛТ – коэффициент де Ритиса, в норме= 1,33+ - 0,42.
При инфаркте миокарда активность АСТ в крови увел в 8-10 раз, а АЛТ – в 1,5-2 раза, итог: коэффициент >1.
АСТ увеличивается при некрозе ткани, итог: коэффициент >1. При гепатитах активность АЛТ увеличивается в 8-10 раз, АСТ –в 2-4 раза, итог: коэффициент <1.
Активность щелочной фосфатазы увеличивается при рахите, механической желтухе и патологии костной ткани.
Активность кислой фосфатазы увеличивается при раке простаты.
Активность амилазы увеличивается при патологии слюнных желез и остром панкреатите.
Также при остром панкреатите Увеличена активность: амилаза крови и мочи, липаза, фосфолипаза, трипсин, химотрипсин.
А при гепатите Увеличена активность: АЛТ, АСТ, ЛДГ4,5, сорбитолдегидрогеназа.
Лечение ферментами
Заместительная терапия
Пепсин - при недостаточной активности пепсина в желудке, при нарушении переваривания белков, синтеза и секреции пепсина
Патогенетическая терапия
Трипсин, химотрипсин - при лечении гнойных ран (в хирургии и стоматологии), способен расщеплять пептидные связи в белках
ДНКаза - используется в лечении вирусных кератитов, гнойных бронхитов
Фибринолизин, стрептокиназа - способны растворять нити фибрина (ликвидация тромбов)
Липаза, гиалуронидаза -используются для лечения спаечной болезни, рубцов
Лизилоксидаза, аспарагиназа - лечение опухолей
10. Кинетика ферментативных реакций. Зависимость скорости ферментативных реакций от концентрации субстрата и фермента, рН, температуры среды. Принципы количественного определения активности ферментов.
