
- •I. Химия белка
- •Функции белков:
- •5. Классификация и характеристика простых белков (альбумины, глобулины, гистоны, протамины, протеиноиды).
- •1. Альбумины
- •2. Глобулины
- •3.Гистоны
- •4.Протамины
- •5.Протеноиды
- •6. Классификация и характеристика сложных белков (липопротсины, хром-мопротеины, нуклеопротеины, гликопротеины, фосфопротеины).
- •II. Ферменты. Витамины.
- •7. Химическая природа ферментов, Активный и аллостерический центры фермента, их роль.
- •8. Виды специфичности ферментов. Основные пути активации и ингибирования ферментативной активности.
- •9. Мультиферментные комплексы и изоферменты. Клиническое значение определения активности изоферментов. Энзимодиагностика. Ферментативные лекарственные препараты.
- •1. Зависимость скорости реакции от температуры
- •2. Зависимость скорости реакции от рН
- •3. Зависимость скорости реакции от концентрации субстрата
- •4. Зависимость от концентрации фермента
- •11. Классификация ферментов. Общая характеристика класса оксидоредуктаз. Основные подклассы. Коферменты оксидоредуктазных реакций.
- •Характеристика фермента
- •12. Классификация ферментов. Общая характеристика класса трансфераз. Основные подклассы. Коферменты трансферазных реакций.
- •13. Классификация ферментов. Общая характеристика гидролаз. Основные подклассы гидролаз.
- •14. Классификация ферментов. Общая характеристика класса лиаз. Коферменты лиазных реакций.
- •15. Классификация ферментов. Общая характеристика изомераз и лигаз. Коферменты изомеразных или глазных реакций.
- •16. Классификация витаминов. Причины развития витаминной недостаточности в организме человека. Авитаминозы, гиповитаминозы, гипервитаминозы, Антивитамины.
- •17. Витамин в1, его химическая структура, признаки витаминной недостаточности. Нарушение углеводного обмена при - витаминной недостаточности.
- •18. Витамины pp и в2, их структура, участие в обмене веществ, признаки витаминной недостаточности.
- •19. Витамины с и р, их структура, признаки витаминной недостаточности и влияние на обмен веществ.
- •20. Витамин биотин, их структура, признаки витаминной недостаточности и участие в обмене веществ.
- •21. Витамин b12, и фолиевая кислота, участие в обмене веществ и признаки витаминной недостаточности.
- •22. Витамины а, е, к. Признаки витаминной недостаточности, участие в обмене веществ.
- •23. Витамин d, химическая природа витамина, гормонально-активные формы, участие витамина в обмене веществ. Рахит. Основные пути метаболизма. БиоэнергетическиЙ обмен.
- •24. Понятие об обмене веществ. Катаболизм и анаболизм, их характеристика и взаимосвязь. Виды метаболических путей. Центральные метаболиты.
- •26. Дыхательная цепь. Ферментные комплексы дыхательной цепи, их локализация. Редокс - потенциалы ферментных систем. Ингибиторы переноса электронов.
- •27. Окислительное фосфорилирование. Значение и механизм процесса. Расообщение дыхания и фосфорилирования. Свободное окисление. Субстратное фосфорилирование.
- •28. Свободнорадикальное окисление. Понятие о перекисном окислении липидов.
- •29. Антиоксидантная система организма. Неферментативные антиоксиданты. Антиоксидантные ферменты.
- •IV. Обмен углеводов.
- •30. Классификация и химическая структура углеводов, их роль в обеспечении жизнедеятельности организма. Переваривание и всасывание углеводов в пищеварительном тракте. Мальабсорбция.
- •32. Структура гликогена и его синтез в клетках печени и мышц. Функциональные отличия гликогена этих тканей. Распад гликогена. Гликогенозы.
- •33. Гликолиз. Биологическое значение, химизм процесса. Необратимые этапы и ключевые ферменты гликолиза. Биоэнергетика и регуляция этого процесса. Эффект Пастера.
- •II этап - окислительное декарбоксилирование пвк
- •III этап - Цикл Кребса
- •35. Апотомический путь обмена глюкозы (пентозный цикл). Окислительная и неокислительная ветви процесса. Биологическое значение пентозного цикла.
- •36. Глюконеогенез. Основные субстраты и ключевые ферменты процесса. Цикл Кори.
- •38. Патология углеводного обмена. Сахарный диабет. Нарушения углеводного и липидного обменов при этом заболевании.
- •V. Обмен липидов
- •39. Классификация и химическая структура липидов. Роль липидов в обеспечении жизнедеятельности организма.
- •40. Биологические мембраны, их структурные компоненты. Функции биологических мембран.
- •41. Холестерин, его биосинтез и биологическая роль. Гиперхолестеринемия. Атеросклероз. Роль липопротеинов в обмене холестерина.
- •1)Наследственная.
- •42. Классификация и химическая структура фосфолипидов. Биологическая роль, переваривание, биосинтез и распад фосфолипидов. Липотропные вещества.
- •43. Переваривание и всасывание липидов, роль желчи в этом процессе. Желчные кислоты. Ресинтез липидов в клетке эпителия кишечника. Транспортные формы липидов. Биологическая роль жировых депо.
- •44. Липолиз триглицеридов в тканях. Окисление глицерина. Биоэнергетика процесса.
- •45. Окисление жирных кислот. Внутриклеточная локализация и биоэнергетика процесса. Особенности обмена жирных кислот с нечетным количеством углеродных атомов и ненасыщенных жирных кислот.
- •46. Синтез жирных кислот. Внутриклеточная локализация, ферменты и коферменты процесса. Биосинтез триглицеридов.
- •47. Образование и распад кетоновых тел. Кетогенез в норме и при патологии.
- •48. Гормональная регуляция липидного обмена. Патология липидного обмена: гиперлипидемии, липоидозы, жировое перерождение печени, ожирение, атеросклероз.
- •3. Конденсация йодтирозинов
- •1. Аминокислоты и их производные:
- •2. Пептиды
II. Ферменты. Витамины.
7. Химическая природа ферментов, Активный и аллостерический центры фермента, их роль.
Доказательства белковой природы ферментов: все выделенные ферменты – белки, методы получение ферментов и белков одинаковы, факторы, вызывающие денатурацию белка, вызывают инактивацию ферментов, при гидролизе ферменты дают аминокислоты, ферменты обладают высокой специфичностью.
Ферменты могут быть простыми белками пепсин, трипсин, уреаза, лизоцим.
Ферменты могут быть сложными белками ЛДГ, трансаминазы.
Сложные ферменты помимо белковой части содержатнебелковую часть – кофермент.
Отличия ферментов от неорганических каталазаторов: высокая молекулярная лабильность, специфичность действия, регуляция ферментов нейрогуморальным путем с участием других ферментов.
Ферменты, являясь белками, имеют каждый свою I, II, III, IV – структуры.
Активный центр фермента — это зона молекулы фермента, которая отвечает за выбор субстрата, связывание и превращение его в продукты реакции. Активный центр формируется в процессе образования III и IV структуры фермента. Он выполняет каталитическую функцию. Его формируют чаще следующие аминокислоты: серин, цистеин, лизин, гистидин, глутаминовая кислота, аспарагиновая кислота, тирозин, которые имеют функциональные группы в радикалах. Эти группы в ходе катализа реагируют с субстратом. Субстрат – это вещество, на которое действует фермент, в результате чего образуются продукты реакции. В активном центре рассматривают каталитический и субстратный участки. В субстратном участке фиксируется субстрат, а в каталитическом – происходит превращение субстрата при условии, если есть стерическое соответствие субстрата и активного центра фермента.
Аллостерический центр характерен для ферментов, имеющих IV-структуру. Это другой центр, пространственно не совпадает с активным центром. С этим центром связываются определённые, обычно низкомолекулярные, вещества (эффектроы или модуляторы), молекулы которых отличаются по структуре от субстратов. Присоединение эффектора к аллостерическому центру изменяет III и IV- структуры молекулы фермента и соответственно конфигурацию активного центра, вызывая либо снижение или повышение активности фермента.
8. Виды специфичности ферментов. Основные пути активации и ингибирования ферментативной активности.
Специфичность действия ферментов — Это способность фермента взаимодействовать с одним субстратом или группой близких по химическому строению субстратов. Различают:
Абсолютная специфичность – фермент катализирует превращение только одного субстрата. Например: аргиназа расщепляет аргинин на мочевину и орнитин, сахараза расщепляет сахарозу на глюкозу и фруктозу, уреаза расщепляет мочевину до углекислого газа и аммиака.
Относительная специфичность – действие фермента на группу субстратов, имеющих определенный тип связи. Например: протеолитические ферменты (пепсин, трипсин, химотрипсин) гидролизуют пептидную связь в различных белках, но эта связь должна быть образована определенными аминокислотами; лиаза гидролизирует жиры по месту сложноэфирной связи на глицерин и ЖК.
Групповая специфичность Фермент действует на отдельные связи определённой группы субстратов.
Пепсин расщепляет связи, образованные аминогруппой тирозина или фенилаланина.
Трипсин гидролизует пептидные связи, в образовании которых принимают участие СООН-группы лиз и арг.
Химотрипсин гидролизует пептидные связи, в образовании которых участвуют СООН-группы ароматических АМК.
Эластаза гидролизует пептидные связи, в образовании которых участвуют СООН-группы гли, ала.
Стереоспецифичность – фермент катализирует превращение одного из стереоизомеров. Например: фумараза действует на фумаровую кислоту.
Активаторы – вещества, ускоряющие ход химической реакции. Ими могут быть ионы металлов, гормоны, коферменты. Рассматривают различные виды активации ферментов: аллостерическая активация, «ограниченный протеолиз». Аллостерическая регуляция характерна только для особой группы ферментов с IV структурой, имеющих регуляторные центры для связывания аллостерических эффекторов. Механизм действия аллостерических активаторов или ингибиторов на фермент заключается в изменении конформации активного центра фермента.
«Ограниченный протеолиз» – это активация фермента путем модификации его, т.е. превращение неактивного предшественника в активную форму фермента путем разрыва пептидной связи и отщепление от профермента небольшого фрагмента. Затем следует перестройка пространственной структуры оставшейся части макромалекулы. Этот вид активации характерен для протеолитических ферментов ЖКТ, свертывающей системы крови. Например:
пепсиноген
пепсин + пептид-ингибитор
НСЕ
Ингибиторы – вещества, вызывающие частичное (обратимое) или полное (необратимое) торможение реакций, катализируемых ферментами. Ингибиторами могут быть органические (антибиотики, противоопухолевые препараты, метаболиты, гормоны) и неорганические (соли тяжелых металлов, ионы металлов) соединения. В молекуле ингибитора имеются реакционно-способные группы, которые блокируют в активном центре фермента важные для катализа функциональные группы. Рассматривают аллостерическое ингибирование, конкурентное ингибирование. Конкурентное ингибирование возникает, когда ингибитор и субстрат имея похожую химическую структуру конкурируют за активный центр фермента. Классическим примером подобного типа ингибирования является торможение сукцинатдегидрогеназы (СДГ) малоновой кислотой (малонат). СДГ катализирует окисление янтарной кислоты в фумаровую.
Если в среду добавить малонат (ингибитор), то в результате структурного сходства его с истинным субстратом-сукцинатом он будет взаимодействовать с активным центром фермента, тормозя реакцию окисления сукцината. Образовавшийся фермент-ингибиторный комплекс не распадается с образованием продуктов реакции. Метод конкурентного торможения нашел широкое применение в медицинской практике. Например, применение сульфаниламидных препаратов при лечении некоторых инфекционных заболеваний. Эти препараты имеют структурное сходство с парааминобензойной кислотой, которую бактерии используют для синтеза фолиевой кислоты, являющейся необходимой для их размножения. Торможение синтеза фолиевой кислоты препятствует развитию микроорганизмов. По такому принципу ингибирования действуют противоопухолевые препараты. (метатрексат, фтоурацил). Лечение подагры аллопуринолом основано на ингибировании ксантиноксидазы.