
- •I. Химия белка
- •Функции белков:
- •5. Классификация и характеристика простых белков (альбумины, глобулины, гистоны, протамины, протеиноиды).
- •1. Альбумины
- •2. Глобулины
- •3.Гистоны
- •4.Протамины
- •5.Протеноиды
- •6. Классификация и характеристика сложных белков (липопротсины, хром-мопротеины, нуклеопротеины, гликопротеины, фосфопротеины).
- •II. Ферменты. Витамины.
- •7. Химическая природа ферментов, Активный и аллостерический центры фермента, их роль.
- •8. Виды специфичности ферментов. Основные пути активации и ингибирования ферментативной активности.
- •9. Мультиферментные комплексы и изоферменты. Клиническое значение определения активности изоферментов. Энзимодиагностика. Ферментативные лекарственные препараты.
- •1. Зависимость скорости реакции от температуры
- •2. Зависимость скорости реакции от рН
- •3. Зависимость скорости реакции от концентрации субстрата
- •4. Зависимость от концентрации фермента
- •11. Классификация ферментов. Общая характеристика класса оксидоредуктаз. Основные подклассы. Коферменты оксидоредуктазных реакций.
- •Характеристика фермента
- •12. Классификация ферментов. Общая характеристика класса трансфераз. Основные подклассы. Коферменты трансферазных реакций.
- •13. Классификация ферментов. Общая характеристика гидролаз. Основные подклассы гидролаз.
- •14. Классификация ферментов. Общая характеристика класса лиаз. Коферменты лиазных реакций.
- •15. Классификация ферментов. Общая характеристика изомераз и лигаз. Коферменты изомеразных или глазных реакций.
- •16. Классификация витаминов. Причины развития витаминной недостаточности в организме человека. Авитаминозы, гиповитаминозы, гипервитаминозы, Антивитамины.
- •17. Витамин в1, его химическая структура, признаки витаминной недостаточности. Нарушение углеводного обмена при - витаминной недостаточности.
- •18. Витамины pp и в2, их структура, участие в обмене веществ, признаки витаминной недостаточности.
- •19. Витамины с и р, их структура, признаки витаминной недостаточности и влияние на обмен веществ.
- •20. Витамин биотин, их структура, признаки витаминной недостаточности и участие в обмене веществ.
- •21. Витамин b12, и фолиевая кислота, участие в обмене веществ и признаки витаминной недостаточности.
- •22. Витамины а, е, к. Признаки витаминной недостаточности, участие в обмене веществ.
- •23. Витамин d, химическая природа витамина, гормонально-активные формы, участие витамина в обмене веществ. Рахит. Основные пути метаболизма. БиоэнергетическиЙ обмен.
- •24. Понятие об обмене веществ. Катаболизм и анаболизм, их характеристика и взаимосвязь. Виды метаболических путей. Центральные метаболиты.
- •26. Дыхательная цепь. Ферментные комплексы дыхательной цепи, их локализация. Редокс - потенциалы ферментных систем. Ингибиторы переноса электронов.
- •27. Окислительное фосфорилирование. Значение и механизм процесса. Расообщение дыхания и фосфорилирования. Свободное окисление. Субстратное фосфорилирование.
- •28. Свободнорадикальное окисление. Понятие о перекисном окислении липидов.
- •29. Антиоксидантная система организма. Неферментативные антиоксиданты. Антиоксидантные ферменты.
- •IV. Обмен углеводов.
- •30. Классификация и химическая структура углеводов, их роль в обеспечении жизнедеятельности организма. Переваривание и всасывание углеводов в пищеварительном тракте. Мальабсорбция.
- •32. Структура гликогена и его синтез в клетках печени и мышц. Функциональные отличия гликогена этих тканей. Распад гликогена. Гликогенозы.
- •33. Гликолиз. Биологическое значение, химизм процесса. Необратимые этапы и ключевые ферменты гликолиза. Биоэнергетика и регуляция этого процесса. Эффект Пастера.
- •II этап - окислительное декарбоксилирование пвк
- •III этап - Цикл Кребса
- •35. Апотомический путь обмена глюкозы (пентозный цикл). Окислительная и неокислительная ветви процесса. Биологическое значение пентозного цикла.
- •36. Глюконеогенез. Основные субстраты и ключевые ферменты процесса. Цикл Кори.
- •38. Патология углеводного обмена. Сахарный диабет. Нарушения углеводного и липидного обменов при этом заболевании.
- •V. Обмен липидов
- •39. Классификация и химическая структура липидов. Роль липидов в обеспечении жизнедеятельности организма.
- •40. Биологические мембраны, их структурные компоненты. Функции биологических мембран.
- •41. Холестерин, его биосинтез и биологическая роль. Гиперхолестеринемия. Атеросклероз. Роль липопротеинов в обмене холестерина.
- •1)Наследственная.
- •42. Классификация и химическая структура фосфолипидов. Биологическая роль, переваривание, биосинтез и распад фосфолипидов. Липотропные вещества.
- •43. Переваривание и всасывание липидов, роль желчи в этом процессе. Желчные кислоты. Ресинтез липидов в клетке эпителия кишечника. Транспортные формы липидов. Биологическая роль жировых депо.
- •44. Липолиз триглицеридов в тканях. Окисление глицерина. Биоэнергетика процесса.
- •45. Окисление жирных кислот. Внутриклеточная локализация и биоэнергетика процесса. Особенности обмена жирных кислот с нечетным количеством углеродных атомов и ненасыщенных жирных кислот.
- •46. Синтез жирных кислот. Внутриклеточная локализация, ферменты и коферменты процесса. Биосинтез триглицеридов.
- •47. Образование и распад кетоновых тел. Кетогенез в норме и при патологии.
- •48. Гормональная регуляция липидного обмена. Патология липидного обмена: гиперлипидемии, липоидозы, жировое перерождение печени, ожирение, атеросклероз.
- •3. Конденсация йодтирозинов
- •1. Аминокислоты и их производные:
- •2. Пептиды
44. Липолиз триглицеридов в тканях. Окисление глицерина. Биоэнергетика процесса.
С пищей в сутки поступает 70 г ТАГ. Эндогенный синтез ТАГ идёт в: печени, жировой ткани, стенке кишечника. В плазме крови содержится 1-2,3 ммоль/л ТАГ. ТАГ – резервное топливо, которое накапливается в цитоплазме жировых клеток. В состав мембран ТАГ не входят.
При первичном липолизе распад жиров идет до моноацилглицеринов, т.е. полностью не распадается.
Во вторичном липолизе в реакцию всиупают жиры, которые «отложились» в организме ранее. Распад идет до глицерина и ЖК.
Жирные кислоты поступают в кровь и транспортируются в соединении с альбумином к разным органам.
Глицерин поступает в кровь и там превращается в глицерофосфат, который используется в гликолизе или глюконеогенезе.
Активируется процесс тканевой ТАГ-липазой, которая в свою очередь активируется адреналином, СТГ и глюкагоном, а ингибируется инсулином.
Окисление глицерина:
Баланс аэробного распада глицерина:
От глицерина до ФГА (фосфоглицериновый альдегид) затрата – 1 АТФ и получение + 3 АТФ (окислительное фосфорилирование).
На втором этапе гликолиза при окислении 1 молекулы ФГА получаем 2 АТФ и 1 НАДН+Н, то есть 2+3=5 АТФ.
Таким образом от глицерина до ПВК получаем (3-1) + 5 = 7АТФ.
Окислительное декарбоксилирование ПВК даёт 3АТФ.
ЦТК даёт 12 АТФ.
ИТОГО: 7+3+12 = 22АТФ даёт окисление 1 молекулы глицерина в аэробных условиях.
45. Окисление жирных кислот. Внутриклеточная локализация и биоэнергетика процесса. Особенности обмена жирных кислот с нечетным количеством углеродных атомов и ненасыщенных жирных кислот.
Окисление жирных кислот (β-окисление)
Для преобразования энергии, заключенной в жирных кислотах, в энергию связей АТФ существует метаболический путь окисления жирных кислот до СО2 и воды. Этот путь называется β-окисление.
Включает 4 этапа - первая стадия дегидрирования, стадия гидратации, вторая стадия дегидрирования, тиолазная реакция.
Элементарная схема β-окисления
Реакции β-окисления происходят в митохондриях большинства клеток организма (кроме нервных клеток). Для окисления используются жирные кислоты, поступающие из крови или появляющиеся при липолизе собственных внутриклеточных ТАГ.
Расчет энергетического баланса β-окисления линолиевой кислоты.
так как число атомов углерода равно 18, то количество молекул ацетил-S-КоА равно 9. Значит при его окислении в ЦТК образуется 9×12=108 молекул АТФ.
исходя из формулы (n/2 - 1) число циклов β-окисления равно 8. При расчете получаем 8×5=40 молекул АТФ.
в кислоте имеются 2 двойные связи. Следовательно, в двух циклах β-окисления не образуется 2 молекулы ФАДН2, что равноценно потере 4 молекул АТФ.
на активацию жирной кислоты тратятся 2 макроэргические связи.
Таким образом, энергетический выход 108 + 40 - 4 - 2 =142 молекулы АТФ.
Баланс β-окисления пальмитиновой кислоты (С16).
При окислении жирной кислоты, содержащей n углеродных атомов: получается n/2ацетил-КоА, происходит (n/2 –1)циклов β-окисления, так как при окислении бутирил-КоА получаются сразу 2 молекулы ацетил-КоА.
Расчёт для пальмитиновой кислоты: 16/2 = 8 ацетил-КоА, 16/2 –1 = 7 циклов β-окисления, 7*5 = 35, 8*12 = 96, Таким образом, энергетический выход 96 + 35 - 1=130 АТФ.
Окисление жирных кислот с нечетным числом углеродных атомов
Жирные кислоты с нечетным числом углеродов поступают в организм с растительной пищей и морепродуктами. Их окисление происходит по обычному пути до последней реакции, в которой образуется пропионил-SКоА. Суть превращений пропионил-SКоА сводится к его карбоксилированию, изомеризации и образованию сукцинил-SКоА. В этих реакциях участвуют биотин и витамин В12.
Последние реакции окисления жирных кислот с нечетным числом атомов углерода
Окисление ненасыщенных жирных кислот
При окислении ненасыщенных жирных кислот возникает потребность клетки в дополнительных ферментах изомеразах. Эти изомеразы перемещают двойные связи в жирнокислотных остатках из γ- в β-положение и переводят природные двойные связи из цис- в транс-положение.
Таким образом, уже имеющаяся двойная связь готовится к β-окислению и пропускается первая реакция цикла, в которой участвует ФАД.
Регуляция окисления
•Регуляторный фермент – карнитинацилтрансфераза.
•Чем интенсивнее идёт распад АТФ, тем быстрее окисляются жирные кислоты.
•Скорость окисления зависит от доступности субстрата ацил-КоА.
•Окисление активируется в постабсорбтивный период или при длительной физической работе, когда в результате распада жиров в жировой ткани в крови увеличивается концентрация жирных кислот.
Снижение бетта-окисления приводит к: гипогликемии, снижению образования кетоновых тел, повышению свободных ЖК в крови, миастении, миоглобинурии, накоплению липидов в мышцах. Лечат карнитином.