- •I. Химия белка
- •Функции белков:
- •5. Классификация и характеристика простых белков (альбумины, глобулины, гистоны, протамины, протеиноиды).
- •1. Альбумины
- •2. Глобулины
- •3.Гистоны
- •4.Протамины
- •5.Протеноиды
- •6. Классификация и характеристика сложных белков (липопротсины, хром-мопротеины, нуклеопротеины, гликопротеины, фосфопротеины).
- •II. Ферменты. Витамины.
- •7. Химическая природа ферментов, Активный и аллостерический центры фермента, их роль.
- •8. Виды специфичности ферментов. Основные пути активации и ингибирования ферментативной активности.
- •9. Мультиферментные комплексы и изоферменты. Клиническое значение определения активности изоферментов. Энзимодиагностика. Ферментативные лекарственные препараты.
- •1. Зависимость скорости реакции от температуры
- •2. Зависимость скорости реакции от рН
- •3. Зависимость скорости реакции от концентрации субстрата
- •4. Зависимость от концентрации фермента
- •11. Классификация ферментов. Общая характеристика класса оксидоредуктаз. Основные подклассы. Коферменты оксидоредуктазных реакций.
- •Характеристика фермента
- •12. Классификация ферментов. Общая характеристика класса трансфераз. Основные подклассы. Коферменты трансферазных реакций.
- •13. Классификация ферментов. Общая характеристика гидролаз. Основные подклассы гидролаз.
- •14. Классификация ферментов. Общая характеристика класса лиаз. Коферменты лиазных реакций.
- •15. Классификация ферментов. Общая характеристика изомераз и лигаз. Коферменты изомеразных или глазных реакций.
- •16. Классификация витаминов. Причины развития витаминной недостаточности в организме человека. Авитаминозы, гиповитаминозы, гипервитаминозы, Антивитамины.
- •17. Витамин в1, его химическая структура, признаки витаминной недостаточности. Нарушение углеводного обмена при - витаминной недостаточности.
- •18. Витамины pp и в2, их структура, участие в обмене веществ, признаки витаминной недостаточности.
- •19. Витамины с и р, их структура, признаки витаминной недостаточности и влияние на обмен веществ.
- •20. Витамин биотин, их структура, признаки витаминной недостаточности и участие в обмене веществ.
- •21. Витамин b12, и фолиевая кислота, участие в обмене веществ и признаки витаминной недостаточности.
- •22. Витамины а, е, к. Признаки витаминной недостаточности, участие в обмене веществ.
- •23. Витамин d, химическая природа витамина, гормонально-активные формы, участие витамина в обмене веществ. Рахит. Основные пути метаболизма. БиоэнергетическиЙ обмен.
- •24. Понятие об обмене веществ. Катаболизм и анаболизм, их характеристика и взаимосвязь. Виды метаболических путей. Центральные метаболиты.
- •26. Дыхательная цепь. Ферментные комплексы дыхательной цепи, их локализация. Редокс - потенциалы ферментных систем. Ингибиторы переноса электронов.
- •27. Окислительное фосфорилирование. Значение и механизм процесса. Расообщение дыхания и фосфорилирования. Свободное окисление. Субстратное фосфорилирование.
- •28. Свободнорадикальное окисление. Понятие о перекисном окислении липидов.
- •29. Антиоксидантная система организма. Неферментативные антиоксиданты. Антиоксидантные ферменты.
- •IV. Обмен углеводов.
- •30. Классификация и химическая структура углеводов, их роль в обеспечении жизнедеятельности организма. Переваривание и всасывание углеводов в пищеварительном тракте. Мальабсорбция.
- •32. Структура гликогена и его синтез в клетках печени и мышц. Функциональные отличия гликогена этих тканей. Распад гликогена. Гликогенозы.
- •33. Гликолиз. Биологическое значение, химизм процесса. Необратимые этапы и ключевые ферменты гликолиза. Биоэнергетика и регуляция этого процесса. Эффект Пастера.
- •II этап - окислительное декарбоксилирование пвк
- •III этап - Цикл Кребса
- •35. Апотомический путь обмена глюкозы (пентозный цикл). Окислительная и неокислительная ветви процесса. Биологическое значение пентозного цикла.
- •36. Глюконеогенез. Основные субстраты и ключевые ферменты процесса. Цикл Кори.
- •38. Патология углеводного обмена. Сахарный диабет. Нарушения углеводного и липидного обменов при этом заболевании.
- •V. Обмен липидов
- •39. Классификация и химическая структура липидов. Роль липидов в обеспечении жизнедеятельности организма.
- •40. Биологические мембраны, их структурные компоненты. Функции биологических мембран.
- •41. Холестерин, его биосинтез и биологическая роль. Гиперхолестеринемия. Атеросклероз. Роль липопротеинов в обмене холестерина.
- •1)Наследственная.
- •42. Классификация и химическая структура фосфолипидов. Биологическая роль, переваривание, биосинтез и распад фосфолипидов. Липотропные вещества.
- •43. Переваривание и всасывание липидов, роль желчи в этом процессе. Желчные кислоты. Ресинтез липидов в клетке эпителия кишечника. Транспортные формы липидов. Биологическая роль жировых депо.
- •44. Липолиз триглицеридов в тканях. Окисление глицерина. Биоэнергетика процесса.
- •45. Окисление жирных кислот. Внутриклеточная локализация и биоэнергетика процесса. Особенности обмена жирных кислот с нечетным количеством углеродных атомов и ненасыщенных жирных кислот.
- •46. Синтез жирных кислот. Внутриклеточная локализация, ферменты и коферменты процесса. Биосинтез триглицеридов.
- •47. Образование и распад кетоновых тел. Кетогенез в норме и при патологии.
- •48. Гормональная регуляция липидного обмена. Патология липидного обмена: гиперлипидемии, липоидозы, жировое перерождение печени, ожирение, атеросклероз.
- •3. Конденсация йодтирозинов
- •1. Аминокислоты и их производные:
- •2. Пептиды
IV. Обмен углеводов.
30. Классификация и химическая структура углеводов, их роль в обеспечении жизнедеятельности организма. Переваривание и всасывание углеводов в пищеварительном тракте. Мальабсорбция.
По химическому строению углеводы являются полиоксиальдегидами и полиоксикетонами и продуктами их поликонденсации. Углеводы широко распространены в растительном мире (крахмал, клетчатка и др.), на их долю приходится до 80% на сухое вещество.
Функции углеводов: Энергетическая функция. 60-70% энергии организм получает за счёт углеводов. Суточная потребность в углеводах 400 – 500 г.
1 г углеводов 4,1 ккал энергии. Резерв энергии – гликоген в мышцах.
Структурная функция. Углеводы входят в состав мембран, сухожилий.
Защитная функция. Углеводы содержатся в слизи и антителах.
Углеводы входят в состав биологически активных веществ: нуклеиновых кислот, коферментов, гормонов, гликолипидов, гликопротеидов.
Специфические функции углеводов: входят в состав групповых факторов крови, гепарин, антигены в мембранах при развитии клеточного иммунитета.
Переваривание углеводов Ферменты, расщепляющие углеводы, относятся к гидролазам, так как осуществляют гидролиз гликозидных связей.
Переваривание начинается в ротовой полости. а-Амилаза слюны расщепляет а-1,4-гликозидные связи, не гидролизует связи в дисахаридах. Оптимум рН амилазы – 6,8.
Крахмал расщепляется до декстринов и небольшого количества мальтозы.
Кислый желудочный сок прекращает действие амилазы, лишь в глубине желудка идёт переваривание углеводов до мальтозы.
Переваривание углеводов в кишечнике. В двенадцатиперстной кишке а-амилаза панкреатическая (рН =7,5-8,0) завершает переваривание крахмала и гликогена до мальтозы.
Сахаразо-изомальтазный комплекс гидролизует сахарозу и изомальтозу. Этот комплекс присоединяется к мембране микроворсинок кишечника. Расщепляет а-1,4- и а-1,6- гликозидные связи. Гликоамилазный комплекс (действует как мальтаза) гидролизует а-1,4- гликозидные связи в олигосахаридах
Лактаза кишечного сока гидролизует в-1,4 -гликозидные связи между галактозой и глюкозой в лактозе.
Механизм трансмембранного переноса глюкозы. Глюкоза и фруктоза всасываются из кишечника в клетки слизистой оболочки путём облегчённой диффузии с помощью специфических белков – переносчиков. Глюкоза и галактоза транспортируются в энтероцит путем активного транспорта.
Из клеток кишечника в кровь глюкоза поступает в кровь с помощью облегчённой диффузии.
Из кровотока потребление глюкозы клетками осуществляется путём облегчённой диффузии при участии специальных белков – транспортеров. Исключение составляют клетки мышц и жировой ткани, где облегченная диффузия регулируется инсулином. Без инсулина мембрана этих клеток непроницаема для глюкозы. В клетки печени глюкоза проходит при участии белка ГЛЮТ-2, независимо от инсулина. ГЛЮТ-1 обеспечивает поток глюкозы в мозг. ГЛЮТ-4 переносчик глюкозы в клетки мышц и жировой ткани.
Роль бифидобактерий в переваривании углеводов. Бифидобактерии анаэробные молочнокислые бактерии, населяющие кишечник человека, составляют 95-98% всей микрофлоры кишечника, обнаруживаются уже на 3-5 день после рождения.
Бифидобактерии ферментируют углеводы с образованием молочной и уксусной кислот, тем самым способствуя всасыванию углеводов, способствуют синтезу витаминов К и В1, непатогенны для человека. Антагонисты энтеропатогенных и гнилостных бактерий.
Бифидумбактерин - препарат из живых лиофилизированных бифидобактерий, применяется при дисбактериозе, для своей деятельности нуждается в бифидус факторе, которым богато грудное молоко. Состав бифидус фактора: глюкоза, галактоза, фруктоза, N-ацетилглюкозамин.
Мальабсорбция дисахаридов - нарушения всасывания, вызванные расстройствами транспортных механизмов и недостаточностью пищеварительных ферментов.
Различают: синдром первичной мальабсорбции (наследственный), синдром вторичной мальабсорбции.
Этиология: снижение активности ферментов расщепления углеводов и транспортных переносчиков через кишечную стенку, недостаточное поступление в кишечник ферментов с пищеварительными соками, инактивирование ферментов, морфологические изменения тонкой кишки и нарушение перистальтики.
Непереносимость лактозы Первичная непереносимость лактозы
Недостаточность лактазы наследуется по аутосомно-рецессивному типу.
Симптомы: метеоризм, диарея при употреблении молока.
У взрослых чаще бывает приобретенная форма при энтероколитах, язвенных колитах и др.
31. Глюкоза крови, пути ее поступления и использования. Гексокиназная реакция - ключевая реакция углеводного обмена. Путь превращения глюкозо-6-фосфата. Гипергликемия, гипогликемия, глюкозурия. Диагностическое значение определния глюкозы в крови и моче.
Глюкоза - основной углевод крови. 3,3 – 5,5 ммоль/л – нормогликемия, уровень глюкозы менее 1,7 ммоль/л – смертелен. 90% углеводов крови составляет глюкоза,также содержатся пентозы, фруктоза, при патологии – галактоза. Концентрация глюкозы в крови определяется соотношением между интенсивностью поступления её в кровоток и выходом из крови.
Уровни регуляции содержания глюкозы в крови. Регуляция содержания глюкозы в крови осуществляется на уровне: субстрата, регуляторных ферментов, взаимодействия циклов (эффект Пастера), ЦНС, гормонов (понижают- инсулин, повышают – адреналин, глюкагон, глюкокортикоиды, тироксин, СТГ)
Гексокиназная реакция:
Глюкоза, поступая из крови в клетку, сразу же превращается в свою активную форму –
глюкозо–6–фосфат
Реакция необратимая
Глюкоза уже не может выйти из клетки
Это развилка путей метаболизма глюкозы
Первая реакция гликолиза - превращение глюкозы в глюкозо-6-фосфат - требует АТФ и катализируется тканеспецифическими изоферментами, которые называются гексокиназами.
Гексокиназа ингибируется продуктом реакции — глюкозо-6-фосфатом, который аллостерически связывается с ферментом, изменяя его активность.
По причине того, что основная масса Г-6-Ф в клетке производится путём расщепления гликогена, гексокиназная реакция, по сути, для протекания гликолиза не является необходимой, и фосфорилирования глюкозы в регуляции гликолиза исключительной важности не имеет. Гексокиназная реакция является важным этапом регуляции концентрации глюкозы в крови и в клетке.
Активность глюкокиназы в 10 раз больше активности гексокиназы. Во время пищеварения в печень поступают большие количества глюкозы, возрастает активность глюкокиназы, что предотвращает чрезмерное повышение уровня глюкозы в периферической крови.
Фосфорилирование (активация) - первая стадия любых дальнейших превращений моносахаридов
Пути превращения глюкозо-6-фосфата в организме
Реализация метаболических путей глюкозы в клетке определяется:
Энергетическими запасами клетки
Наличием определенных ферментов
Интенсивностью поступления кислорода в клетку
Если в клетке недостаточно кислорода (работающая мышца) или отсутствуют ферменты тканевого дыхания (эритроциты), глюкоза распадается с образованием лактата.
В органах с хорошей аэрацией (головной мозг, сердечная мышца) глюкоза распадается до конечных продуктов (СО2, Н2О)
Гипергликемия
Физиологическая
1)Алиментарная возникает после приёма пищи
2)Эмоциональная при стрессе
3) Патологическая (Возникает при: 1) сахарном диабете2) избытке контринсулярных гормонов, 3) расстройствах мозгового кровообращения)
Глюкозурия – появление глюкозы в моче. Наблюдается, если гипергликемия более 9,3 ммоль/л, то есть превышает почечный порог.
Возникает при: нарушении углеводного обмена, повреждениях почек, острых инфекциях, сотрясении головного мозга.
Гипогликемия- снижение содержания глюкозы крови. Симптомы гипогликемии сходны с симптомами гипоксии: головокружение, обморок, ступор, кома.
Причины гипогликемии голодание, усиленная мышечная работа, введение инсулина, инсулинома, злокачественные опухоли из-за повышенной утилизации глюкозы, алкоголизм (угнетение глюконеогенеза), заболевания почек, нарушения функции печени, гипофизарная, надпочечниковая, тиреоидная недостаточность, беременность и лактация, гликогенозы.
