Добавил:
ac3402546@gmail.com Направление обучения: транспортировка нефти, газа и нефтепродуктов группа ВН (Вечерняя форма обучения) Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекц / pdf / 9 Истечение. Дросселирование

.pdf
Скачиваний:
19
Добавлен:
01.06.2021
Размер:
1.52 Mб
Скачать

Дросселирование. Эффект Джоуля-Томсона

Эффект падения давления потока рабочего тела в процессе преодоления им (потоком) местного сопротивления называется дросселированием.

Причинами возникновения местных сопротивлений при движении потока рабочего тела по каналам могут быть запорные, регулирующие и измерительные устройства; повороты, сужение, загрязнение каналов и т.д.

Рассмотрим процесс дросселирования, протекающий без внешней работы ( W1,2* = 0), в котором отсутствует теплообмен рабочего тела с внешней средой ( Q1,2* = 0).

Падение давления за местным сопротивлением обусловлено диссипацией (потерей) энергии потока, расходуемой на преодоление этого сопротивления, то есть на работу необратимых потерь ( W1,2** ).

С учетом перечисленных условий рассматриваемого процесса дросселирования, уравнение первого начала термодинамики для потока по балансу рабочего тела

dQ* + dQ** = dH + dW * + dW **

примет вид

H2 - H1 = 0 или H = idem

Это значит, что рассматриваемый процесс дросселирования

является процессом изоэнтальпийным: энтальпия рабочего

.

тела до дросселя численно равна энтальпии рабочего тела после дросселя. При течении внутри дросселя энтальпия газа или пара меняется.

Если рассматривать в качестве местного сопротивления

сужение канала, в суженном сечении поток ускоряется, кинетическая энергия увеличивается и энтальпия рабочего тела уменьшается (процесс 1 - 2'). После дросселя сечение потока вновь возрастает, поток тормозится, кинетическая энергия уменьшается, а энтальпия увеличивается до прежнего значения (процесс 2' - 2).

Процесс дросселирования является процессом необратимым; он всегда сопровождается ростом энтропии рабочего тела.

Явление изменения температуры газа или жидкости при адиабатном дросселировании называется эффектом Джоуля

Томсона.

Различают дифференциальный и интегральный дроссель – эффекты. Величина дифференциального дроссель эффекта

определяется из соотношения

 

æ

T

ö

D = ç

÷

h

ç

 

÷

 

è

p øh

где Dh коэффициент дросселирования или коэффициент

Джоуля – Томсона, .

Интегральный дроссель-эффект определяется по соотношению

2

T2 -T1 = ò Dh × dp

1

Коэффициент Джоуля – Томсона определяется из следующего уравнения, выведенного из математических выражений первого начала термодинамики и второго начала

термостатики

æ

v ö

 

 

 

 

 

 

T ç

 

÷

- v

 

 

Dh =

è

T ø p

 

.

 

c p

 

 

 

 

 

Знак дифференциального дроссель–эффекта (коэффициента Джоуля – Томсона) определяется из анализа уравнения. В зависимости от характера изменения температуры T, имеют место три вида дроссель–эффекта (процесс дросселирования всегда происходит с падением давления dp<0):

1.Дроссель–эффект положительный (Dh > 0), в этом случае процесс дросселирования сопровождается снижением температуры рабочего тела (dT<0);

2.Дроссель–эффект отрицательный (Dh < 0), в этом случае процесс дросселирования сопровождается повышением температуры рабочего тела (dT>0);

3.Дроссель–эффект равен нулю (Dh = 0), если в процессе дросселирования температура рабочего тела не изменяется. Нулевой дроссель-эффект наблюдается при дросселировании идеального газа.

Как показывает опыт, для одного и того же вещества в зависимости от значений параметров состояния коэффициент Джоуля – Томсона Dh может иметь положительные, отрицательные значения, а также быть равным нулю.

Состояние газа или жидкости, которому соответствует условие Dh = 0, называется точкой инверсий. Геометрическое место точек инверсии на диаграмме состояния данного вещества называется кривой инверсии.

Кривая инверсии описывается уравнением

.

æ

v ö

=

 

v

 

ç

 

÷

 

 

 

 

T

 

è

T øp

 

Для каждого вещества в диаграмме р - v имеется своя кривая инверсии. Закон соответственных состояний позволяет построить обобщенные кривые инверсии для групп термодинамически подобных веществ. Для природных газов инверсионная диаграмма приведена на графике в виде π = f(τ)