
Лекция 4
Метод зеркальных изображений.
Метод применим для расчета полей, созданных системой источников поля (зарядов в электростатическом поле либо токов в магнитном поле и в электрическом поле постоянных токов), расположенных вблизи плоской бесконечно протяженной границы, разделяющей области с различными характеристиками среды (, , ). Рассмотрим метод на примере электростатического поля, созданного системой зарядов вблизи плоской проводящей границы.
Пусть в диэлектрике на высоте h над проводящей плоскостью находится заряженное тело с зарядом +q (рис.4–1а).
jy
+q jy +q
h h
x x
U = const U = const
а) h
–q
б)
Рисунок 4–1
Поле, созданное зарядом q
, приведет к уходу с поверхности проводника
одноименных зарядов, т.е. к появлению
на поверхности слоя зарядов противоположного
знака, распределенных по поверхности
с некоторой плотностью (),
величина которой в разных точках
различна. Линии напряженности начинаются
на теле с положительным зарядом (+q)
и заканчиваются на проводящей
плоскости с зарядом (– ),
причем линии напряженности будут
подходить к проводящей равнопотенциальной
поверхности под прямым углом. Рассчитать
такое поле можно, лишь зная закон
распределения поверхностного заряда
на проводящей
плоскости: = D
= E
=
.
Для этого необходимо знать зависимость
потенциала от координат U
(x, y, z)
, что невозможно не зная закон распределения
заряда (x,
y, z).
Рассмотрим поле в диэлектрике, созданное двумя заряженными одинаковыми телами с равными и противоположными по знаку зарядами (+q, – q ), расположенными на расстоянии 2h друг от друга (рис. 4–1б). Созданная такой системой зарядов картина поля симметрична относительно плоскости, все точки которой равноудалены от заряженных тел. Линии напряженности электрического поля в силу симметрии перпендикулярны этой плоскости. Поэтому плоскость симметрии является поверхностью равного потенциала.
Сопоставляя полученную (рис.4–1б) и исходную (рис.4–1а) картины полей, можем утверждать, что из-за одинаковой геометрии и граничных условий картины поля в верхней полуплоскости идентичны, а, следовательно, все характеристики поля полностью совпадают.
Таким образом, метод зеркальных изображений позволяет заменить проводящую среду, ограниченную плоской поверхностью, диэлектриком с зеркальным изображением заряженного тела и с изменением знака заряда на противоположный. При этом поле в исходной области остается неизменным.
Расчет поля системы двух зарядов в диэлектрике существенно проще, чем в исходной задаче, т.е. метод зеркальных изображений позволяет упростить расчет поля. Этот метод применим для любого количества заряженных тел, а в плоскопараллельных полях для любого числа параллельных земле проводов с зарядами.
Рассчитав потенциал этим методом, легко определить через его производную на плоскости симметрии распределение зарядов на поверхности проводника.
|
y=0
Применение метода зеркальных изображений
возможно и в случае, когда заряды
находятся внутри диэлектрика между
гранями двугранного угла «»,
образованного проводящими поверхностями,
если
,
где «n» целое число.
Для угла
(рис.4–2) имеем:
-2 +1
+21 -11
Рисунок 4-2
Отразим заряд +1 от вертикальной стенки, вследствие чего появится второй заряд противоположного знака –2 , и оба эти заряда оказались расположенными над горизонтальной проводящей плоскостью. Отразим эти заряды в горизонтальной плоскости и получим еще два заряда ( 21 и –11). Полная система из четырех зарядов образует картину поля в диэлектрике, часть которой в первом квадранте совпадает с исходной картиной поля.
Метод зеркальных изображение применяется и при отражении зарядов в цилиндрических и в сферических проводящих поверхностях. Он также применим при отражении в поверхностях раздела диэлектриков с различными диэлектрическими проницаемостями для плоской, цилиндрической и сферической границы. Более подробно эти вопросы рассматриваются в курсе «Расчет электромагнитных полей».
Метод конформных отображений.
Расчет поля методом конформных отображений основан на том, что существует возможность отобразить с помощью некоторого математического преобразования заданную область в комплексной плоскости « z » (x + jy) на так называемую каноническую область в комплексной плоскости « ω » ( ξ+j).
В качестве канонической области обычно используется верхняя полуплоскость, а также круг либо полоса. Преобразование называется конформным, так как при переходе от одной области к другой либо обратно сохраняются углы в точках пересечения между любыми линиями в обеих областях z = ω (рис.4-3).
jy j
z ω
1 z 1 2
ω
2
zk ωk
x ξ
Рисунок 4–3
Для изучения полей это очень важно, так как мы знаем, что линии равного потенциала и линии напряженности всегда пересекаются под прямым углом.
Существует общий подход к преобразованию произвольной многоугольной области, ограниченной ломаной линией на верхнюю полуплоскость и обратно с помощью интеграла Кристоффеля-Шварца.
Для многих часто встречающихся конфигураций областей получены соотношения, необходимые для преобразования, они приведены в справочной литературе. Рассмотрим некоторые простые примеры.
1. Двугранный угол () – поле между двумя проводящими плоскостями, сходящимися под углом (рис. 4–4а).
j
y
j
z
U = 0 ω
C
B C
A U = 0 x B A ξ
0 а) 0 б)
Рисунок 4–4
П
роводящие
грани имеют одинаковый потенциал (U
= 0), совместим ось (x)
со следом одной из граней. Преобразование
такой области на верхнюю полуплоскость
(ω) осуществляется по формуле:
Положение
любой точки на первой грани (точка А),
координаты которой в исходной системе
координат записываются в виде:
,
в области ω определяется координатой
и располагаются на положительной части
вещественной оси ξ. (рис. 4–3б). Изменяется
лишь линейный масштаб. Положение любой
точки на второй грани (точка B),
координаты которой в исходной системе
координат записываются в виде:
,
в области ω определяется координатой
и располагаются на отрицательной части
вещественной оси ξ. Положение любой
точки на биссектрисе угла (точка С),
координаты которой в исходной системе
координат записываются в виде:
,
в области ω определяется координатой
и располагаются на мнимой оси j
(см. рис.4–4б).
2. Бесконечно глубокий проводящий паз, шириной (d) (рисунок 4–5а).
jy j
A F D z ω
E
E F
d
x ξ
B 0 C A B 0 C D
а) б)
Рисунок 4–5
П
ометим
начало координат посредине дна паза и
направим ось (x) вдоль
дна вправо. Преобразование такой области
на верхнюю полуплоскость (ω) осуществляется
по формуле:
.
Положение
угловых точек (В и С), координаты
которых в исходной системе координат
записывается в виде:
,
в области ω также расположены на
вещественной оси ξ и определяется
координатами:
.
Положение
точек (A и D),
координаты которых в исходной системе
координат записывается в виде:
,
в области ω расположены на вещественной
оси ξ и определяется координатами:
.
Положение
точки (E), координата
которой в исходной системе записывается
в виде:
,
в области ω расположена на мнимой оси
j
и определяется координатой:
. (см. рис.4–5б).
3. Плоскость с вертикальным выступом (стеной), высотой (h) (рисунок 4–6а).
jy j
B z ω
C B ω0
z0
h
x ξ
A 0 D A 0 C 0 D
а) б)
Рисунок 4–6
Н
ачало
координат поместим у основания выступа
и направим ось (x) вдоль
горизонтальной плоскости. Преобразование
такой области на верхнюю полуплоскость
(ω) осуществляется по формуле:
.
Положение
точки (С), координата которой в
исходной системе записывается в виде:
,
в области ω расположена в начале
координат, так как определяется
координатой:
.
Положение точки (0), координата
которой в исходной системе записывается
в виде:
,
в области ω вследствие двузначности
корня дает два значения на вещественной
оси ξ и определяется координатами:
.
Положение точек (A
и D), координаты
которых в исходной системе записывается
в виде:
,
в области ω расположены на вещественной
оси ξ и определяется координатами:
Положение точки (B),
координата которой в исходной системе
записывается в виде:
(y>h),
в области ω расположена на мнимой оси
j
и определяется координатой:
(см.
рис.4–6б).
Получение выражения для комплексного потенциала в исходной области на плоскости (z) и определение зависимости плотности заряда () на поверхности проводников рассмотрим на примере плоскости с выступом.
Пусть
в исходной системе заряженный провод
с зарядом (+) находится
в точке с координатой (z0
= x0 +
jy0). После
преобразования исходной области на
каноническую область на основе
используемой формулы преобразования
найдем место расположения заряженного
провода в области ω (рис.4-6):
. Затем, используя метод зеркальных
изображений, заменим проводящую среду
диэлектриком с проницаемостью
и с зеркально расположенным зарядом
(–) . Его координата
является сопряженной с координатой
исходного заряда:
.
Запишем известное выражение для комплексного потенциала в системе двух заряженных осей (проводов).
,
здесь ω – координата произвольной точки поля. В области ω линии равного потенциала и линии напряженности являются, как мы уже знаем, окружностями. Для перехода к исходной области выразим ω через z, тогда получим:
.
Величину напряженности в любой точке определяем через производную от комплексного потенциала:
.
После упрощения получим:
.
Подставляя координаты поверхности проводников и умножая на , получим значения поверхностной плотности заряда на поверхности проводников: = D = E .
Графический метод построения картины плоскопараллельного поля.
Очень часто границы проводящих поверхностей не могут быть описаны математическими выражениями, поэтому аналитический расчет полей в этих условиях оказывается невозможным. В этом случае необходимо воспользоваться графическим методом построения картины поля. При графическом построении необходимо соблюдать одновременно три условия.
1. Ортогональность линий равного потенциала и линий напряженности во всех точках их пересечения
2. Линии напряженности должны подходить перпендикулярно к поверхности проводящих тел.
3. Ячейки ортогональной сетки, образованной линиями U = const и V = const должны быть подобны друг другу.
Два первых условия нам уже известны. Третье условие вызвано необходимостью построения картины поля с постоянным приращением потенциала между любыми соседними линиями равного потенциала (U = const) и постоянным приращением функции потока между любыми соседними линиями напряженности (V = const). Запишем величину модуля напряженности через приращения в криволинейной ортогональной системе координат, связанной с линиями поля:
,
откуда:
=
k = const.
Это означает, что все ячейки при построении картины поля должны быть подобными (рис. 4–7). Удобнее выбирать V = U, тогда a = n , при этом все ячейки должны быть криволинейными квадратами (k = 1).
U1
V1
U2 a
V2
+ n
–
Рисунок 4–7