
Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:Все про интегралы.doc
X
- •1. Первообразная и неопределенный интеграл.
- •2. Определенный интеграл.
- •4. Свойство определенного интеграла – теорема о среднем. Обобщенная теорема о среднем.
- •5. Замена переменной в определенном интеграле.
- •6. Интегрирование по частям в определенном интеграле.
- •7. Определенный интеграл с переменным верхним пределом.
- •8. Формула Ньютона-Лейбница.
- •9. Интеграл ошибок.
- •10. Интегральный синус. Свойства.
- •11. Интегральный логарифм.
- •12. Интегрирование рациональных дробей.
- •16. Несобственные интегралы по неограниченному промежутку. Теоремы сравнения.
- •14. Формула прямоугольников
- •15.Формула трапеций.
- •13. Методы рационализации.
- •1. Подстановка Эйлера.
- •2. Универсальная тригонометрическая замена.
- •3. Интегрирование тригонометрических функций.
- •17. Несобственные интегралы от неограниченной функции. Свойства.
- •18. Интеграл, зависящий от параметра.
- •19. Гамма-функция.
- •20. Нахождение площади в декартовых координатах.
- •22. Нахождение объема тела вращения.
- •21. Нахождение длины дуги в декартовых и поляных координатах.
- •23. Числовые ряды. Сходимость. Остаток ряда. Необходимый признак сходимости.
- •25. Числовые ряды. Теоремы сравнения.
- •26. Теорема (признак Коши).
- •27. Теорема (признак Даламбера).
- •28.Интегральный признак сходимости.
- •30. Признак Лейбница сходимости знакочередующегося ряда.
- •29. Абсолютная сходимость. Свойства абсолютно сходящихся рядов.
- •34. Остаточный член формулы Тейлора в форме Лагранжа.
- •32. Степенные ряды.
- •31. Приближенное нахождение суммы числового ряда.
- •38. Решение дифференциальных уравнений с помощью рядов. Функция Бесселя.
- •33. Ряд Тейлора. Необходимый и достаточный признаки сходимости.
33. Ряд Тейлора. Необходимый и достаточный признаки сходимости.
Формула Тэйлора выглядит следующим образом:
остаточный член.
Для тех значений х, которых остаточный
член мал, многочлен дает приближенное
значение функции f(x).
Для
того, чтобы функция раскладывалась в
ряд Тейлора, необходимо и достаточно,
чтобы остаточный член стремился к нулю.
То есть
при
Доказательство.
где
Так как, по условию,
то
Но
- естьn-ная
частичная сумма ряда; ее предел равен
сумме ряда, стоящего в правой части
равенства (
).
Следовательно, равенство справедливо.
Из предыдущего
следует, что ряд Тейлора представляет
данную функцию f(x)
только при
Если предел не равен нулю, то ряд не представляет данной функции, хотя может и сходиться (к другой функции).
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]