Добавил:
Без скрытых скриптов, криптомайнинга, вирусов и прочего, - чистая литература. 你好,所有那些谁花时间翻译中国 Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Д6136 Новоселов АГ Гидродинамика и массообмен в газожидкостных потоках Метод указ лаб раб 2009г.doc
Скачиваний:
14
Добавлен:
13.09.2020
Размер:
1.12 Mб
Скачать

1.1. Описание схемы экспериментальной установки и принципа работы ксиа

1.1.1. Описание конструкции модели ксиа и принципа

его работы

Кожухотрубный струйно-инжекционный аппарат (КСИА) предназначен для проведения тепло-массообменных процессов между газом и жидкостью, а именно для растворения подаваемого газа в жидкости (физическая абсорбция) при постоянной температуре (изотермический процесс массообмена) в условиях интенсивной турбулизации жидкостной и газовой фаз. Конструкция КСИА схематично показана на рис. 1.

КСИА состоит из: основной газовой емкости 1; дополнительной газовой емкости 2, разделенными перегородками 4 и образующих верхнюю часть аппарата; кожухотрубной части аппарата (кожух на рис. 1 не показан) с опускной трубой 5, подъемной трубой 6 и сливной трубой 7, нижней переточной камерой 8 и сливным патрубком 9. В основной газовой емкости установлено сопло 3 для подачи жидкости в аппарат и образования свободной жидкостной струи. Для подачи газа в емкость 1 в ее боковой части предусмотрен патрубок (на рис. 1 не показан).

Рис. 1. Кожухотрубный с труйно-инжекционный аппарат (КСИА)

проточного типа

КСИА работает следующим образом. Исследуемая жидкость подается насосом к соплу 3 под давлением, из которого она вытекает в виде компактной свободной струи, обладающей большой кинетической энергией. При прохождении газовой среды, струя, за счет образующихся на ее поверхности неровностей (возмущений), уносит (инжектирует) окружающий ее газ в опускную трубу 5.

При входе струи жидкости с унесенным газом в опускную трубу 5 в последней образуется мелкодисперсная газожидкостная смесь, которая движется нисходящим прямотоком к нижней части трубы 5. Достигнув нижнего ее конца, газожидкостная смесь перетекает в подъемную трубу 6, в которой она движется восходящим прямотоком в направлении дополнительной газовой емкости 2, в которой меняет свое направление и поступает в сливную трубу 7. В сливной трубе 7 газожидкостная смесь движется нисходящим потоком и удаляется из аппарата через патрубок 9. Для обеспечения такой схемы движения газожидкостной смеси по трубам аппарата предусмотрены разделительные перегородки 4 и 10.

1.1.2. Описание экспериментальной установки

Экспериментальная установка по изучению гидродинамической обстановки в трубах КСИА проточного типа представлена на рис. 2.

Рис. 2. Схема экспериментальной установки

Установка состоит их трехтрубной модели КСИА 1, емкости-накопителя 2, циркуляционного насоса 3, коммуникационных трубопроводов, жидкостных ротаметров 4, 5, газовых счетчиков 6, 7, жидкостных дифференциальных манометров 8, 9. Емкость-накопитель 2 имеет змеевик для охлаждения циркулирующей жидкости 10. Модель КСИА выполнена из оргстекла, за исключением труб, которые сделаны из стекла, что позволяет визуально контролировать уровень газожидкостной смеси в них, а также наблюдать за структурой потоков и гидродинамической обстановкой. Основное и дополнительное сопла могут перемещаться в вертикальном направлении вдоль своей оси и легко заменяться с целью варьирования диаметра проходного сечения d0 в процессе эксперимента и длины вытекающей из них струи Lc.

Для регулирования расходов жидкости через сопла используются краны 11, 12, 13, а для замены жидкости кран 14. Температура жидкости в процессе эксперимента контролируется термометром. Расходы жидкости через сопла определяются с помощью ротаметров 4 и 5, а расходы инжектируемого струей газа счетчиками 6 и 7. Давление в камерах верхней газовой емкости измеряется с помощью жидкостных дифференциальных манометров 8 и 9.

Уровень газожидкостной смеси в трубах и верхней газовой емкости измеряется миллиметровой линейкой от верхней поверхности фланцев нижней трубной решетки.

Расход газовой фазы может дополнительно регулироваться при помощи вентилей 15 и 16, установленных на газовых магистралях за счетчиками 6 и 7, соответственно. Это позволяет определить влияние сопротивлений воздухоподводящих коммуникаций на давление газовой фазы Р1 и Р2 в верхних газовых емкостях и, как следствие, влияние этих сопротивлений на подачу газа в аппарат и общую гидродинамическую обстановку в аппарате.

Модель КСИА была сконструирована таким образом, что может легко быть преобразована в другие конструкции. На рис. 2 показана модель имитирующая КСИА проточного типа, что достигается установкой перегородки в верхней газовой емкости. Для проведения экспериментов на модели КСИА с рециркуляцией фаз верхняя часть со встроенной в ней перегородкой заменяется на идентичную по размерам камеру, но без перегородки 4 (рис. 1), т.е. перегородка 4 отсутствует. Более того, для проведения экспериментов на однотрубной модели, т.е. когда интересует гидродинамика газожидкостного потока и унос газа в одной сливной трубе, то верхняя газовая емкость с перегородкой 4 разворачивается на 180°, образуя фактически отдельный аппарат, с одним соплом и одной трубкой, при этом подача жидкости осуществляется только через ротаметр 5. Таким образом, на данной установке можно осуществлять исследования трех конструкций КСИА.

1.2. Основные параметры, характеризующие

и определяющие структуру и режим

движения газожидкостной смеси

в вертикальных трубах

При движении газожидкостных потоков в вертикальных трубах в условиях струйного диспергирования газовой фазы в опускных и подъемных трубах могут наблюдаться два режима: пузырьковый режим движения и снарядный режим.

В условиях пузырькового режима движения газожидкостной смеси в трубах КСИА наблюдается устойчивая работа аппарата, которая характеризуется постоянством во времени, осредненных по сечению, значений скоростей фаз и давления.

В условиях снарядного режима движения наблюдается неустойчивая работа аппарата, что характеризуется колебаниями уровней газожидкостной смеси в трубах и давлений в соответствующих газовых емкостях 1 и 2 (рис. 1). Появление крупных газовых включений (снарядов) определяется коалесценцией газовых пузырей в жидкости, способность которых к объединению во многом зависит от величины поверхностного натяжения жидкости. Например, система воздух-вода обладает высокой коалесцирующей способностью, а система воздух-водный раствор сульфита натрия – пониженной коалесцирующей способностью.

Коалесцирующая способность системы газ–жидкость во многом определяет структуру газожидкостной смеси, а точнее средний диаметр пузырей , объемное газосодержание и удельную поверхность контакта фаз а.

С другой стороны на перечисленные выше параметры влияют расходные значения фаз, такие как расход жидкости и расход газа .

В изотермических условиях установившегося движения эти параметры связаны между собой следующим соотношением (при условии пузырькового режима)

, (1.1)

где а – удельная поверхность контакта фаз, м23; – объемное газосодержание; – осредненный по объему газожидкостной смеси диаметр пузыря, м.

В уравнение (1.1) входит , под которым понимается отношение объема газа , находящегося в объеме газожидкостной смеси , т.е.

, (1.2)

где – объем жидкости, находящейся в рассматриваемом объеме .

Часто величину определяют, базируясь на модели дрейфа, по уравнению, записывающемуся в общем виде, как

, (1.3)

где , , – приведенные скорости газа, жидкости, газожидкостной смеси, соответственно, м/с; – скорость подъема одиночного пузыря в покоящейся жидкости, м/с; k – коэффициент, учитывающий гидродинамику потока.

Значения приведенных скоростей фаз определяют соответственно для жидкости

, (1.4)

где Sтр – площадь поперечного сечения канала, по которому движется газожидкостная смесь,

и для газа

, (1.5)

Для газожидкостной смеси значение приведенной скорости смеси рассчитывают по уравнению

. (1.6)

В уравнения (1.3÷1.6) входят два параметра, а именно, без знаний которых расчет и практически невозможен.

Если во многом является входным параметром, поддающимся регулировке, то (при струйном инжектировании) – параметр зависимый и, в первую очередь, от скорости истечения струи и ее геометрических размеров, а также от диаметра труб, в которых движется газожидкостная смесь.

В условиях противотока, когда жидкость движется нисходящим потоком, а пузырьки газа всегда стремятся двигаться вверх (всплывать), наблюдается задержка газа в объеме потока и, как следствие, увеличение значения . В этом случае, в уравнении (1.3), в знаменателе, второе слагаемое берется со знаком минус (–).

В условиях прямотока, когда жидкость и газ движутся восходящим потоком, т.е. направления движения жидкости и газа совпадают, упомянутое выше слагаемое берется со знаком плюс (+), т.е. задержки газа не наблюдается и имеет меньшие значения.

При составлении уравнений энергетического баланса в различных сечениях необходимо знать плотность газожидкостной смеси , которая может быть рассчитана из уравнения

, (1.7)

где – плотности жидкости и газа при температуре эксперимента, кг/м3.

Обычно вторым слагаемым в правой части уравнения (1.7) пренебрегают ввиду существенно малого значения по отношению к , т.е. , и тогда с достаточной степенью точности определяют по уравнению

. (1.8)

Тогда расчет гидростатических давлений в интересующих исследователя сечениях канала ведут по уравнению

, (1.9)

где – уровень жидкости в условиях отсутствия газовой фазы.

Соседние файлы в предмете Процессы и аппараты пищевых производств