- •2.Методы физического исследования. Модели в механике. Системы единиц
- •4.Угловые характеристики движения и их связь с линейными.
- •5.Первый закон Ньютона. Инерциальные системы отсчета.
- •7.Третий закон Ньютона. Силы в природе. Силы инерции
- •8.Центр масс. Закон сохранения импульса
- •9.Энергия, работа и мощность.
- •10.Кинетическая и потенциальная энергия.
- •11.Закон всемирного тяготения. Сила тяжести и вес. Невесомость
- •12.Работа и потенциальная энергия в поле тяготения.
- •13.Закон сохранения энергии в механике
- •15.Момент инерции. Уравнение динамики вращательного движения твердого тела
- •16.Момент импульса и закон его сохранения
- •19.Сопоставление формул поступательного и вращательного движения
- •20.Деформация. Сила упругости. Закон Гука.
- •21.Силы трения. Трение скольжения, трение качения
- •22.Давление в жидкости и газе. Гидростатическое давление. Закон Паскаля.
- •23.Архимедова сила. Уравнение неразрывности. Стационарный поток. Статическое и динамическое давления
- •25.Неинерциальные системы отсчета. Силы инерции
- •27.Постулаты специальной теории относительности. Преобразования Лоренца
- •28.Основные следствия из преобразований Лоренца
- •29.Основной закон релятивистской динамики материальной точки.
- •30.Взаимосвязь массы и энергии. Энергия связи системы. Границы применимости классической механики.
- •28. Основные следствия из преобразований Лоренца. Основные следствия из преобразований Лоренца.
- •29. Основной закон релятивистской динамики материальной точки. Основной закон релятивистской динамики материальной точки
- •30. Взаимосвязь массы и энергии. Энергия связи системы. Границы применимости классической механики. Закон взаимосвязи массы и энергии
- •Границы применимости классической механики.
- •31.Идеальный газ. Изопроцессы. Опытные законы идеального газа.
- •32.Абсолютная температура, её определение и связь температурных шкал. Свойства абсолютной температуры
- •35.Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения
- •36.Распределение Больцмана. Барометрическая формула
- •37.Опытное обоснование молекулярно-кинетической теории
- •38.Число степеней свободы молекул. Закон равномерного распределения энергии по степеням свободы
- •39.Работа газа при изменении его объема. Количество теплоты
- •42.Применение первого начала термодинамики к изопроцессам
- •43.Адиабатический процесс. Политропный процесс.
- •44.Круговой процесс. Обратимые и необратимые процессы
- •45. Второе начало термодинамики. Энтропия.
- •46. Взаимосвязь статистического и термодинамического представлений об энтропии.
- •47. Цикл Карно и его к.П.Д. Для идеального газа.
- •48.Силы и потенциальная энергия межмолекулярного взаимодействия
- •49.Уравнение Ван-дер-Ваальса. Изотермы реального газа.
- •50. Внутренняя энергия реального газа. Эффект Джоуля—Томсона
- •§ 64. Эффект Джоуля — Томсона
- •51. Понятие о физической кинетике. Число столкновений, средняя длина свободного пробега, эффективное поперечное сечение молекул.
- •53.Явления переноса. Внутреннее трение. Закон Ньютона.
- •56.Смачивание. Давление под искривленной поверхностью жидкости. Капиллярные явления.
- •57. Кристаллические и аморфные тела. Анизотропия монокристаллов. Характерные свойства и типы кристаллов. Дефекты в кристаллах
- •§71. Типы кристаллических твердых тел
- •59.Испарение, сублимация, плавление и кристаллизация. Аморфные тела
- •60. Фазовые переходы I и II рода. Диаграмма состояния. Тройная точка.
27.Постулаты специальной теории относительности. Преобразования Лоренца
Постулаты специальной (частной) теории относительности. Преобразования Лоренца
Эйнштейн сформулировал два постулата, лежащие в основе специальной теории относительности:
1. Физические явления во всех инерциальных системах отсчета протекают одинаково.Никакими физическими опытами, проведенными внутри замкнутой инерциальной системы отсчета, нельзя обнаружить, покоится ли эта система или движется равномерно и прямолинейно.
2. Скорость света в вакууме одинакова во всех инерциальных системах отсчета и не зависит от скорости движения источника света или наблюдателя.
Наличие этих постулатов позволяет получить новые преобразования координат, отличающиеся от (7.1).
Пусть
система
движется
относительно инерциальной системыKс
постоянной скоростьюvо (рис. 7.1) так,
чтобы осиx и
при
движении совпадали, а осиy,
иz,
были
параллельны друг другу, причем вектор,
соединяющий начала координат,
, гдеt время.
Можно показать, что координатыyиzсвязаны
формуламиy =
;z
=
.Ищем
зависимость между подвижными и
неподвижными координатамиx в виде
,
(7.2)
где искомый коэффициент. Согласно первому постулату в силу равноправия систем отсчета для перехода от неподвижной системы отсчета к подвижной зависимость между координатами должна иметь аналогичный вид и отличаться лишь знаком для скорости vo:
(x
- v=
o, t). (7.3)
Пусть
в моменты времени t =
=
0в точкеx =
=
0в направлении осиxиспускается вспышка
света. Это событие через времяt будет
наблюдаться в точкеx = ct и через
время
в
точке
=
c
.
Здесь используется тот факт, что скорость
светаc для вакуума согласно
2мупостулату Эйнштейна одинакова в
обеих системах. Подставляя в два последних
равенства выражения (7.2) и (7.3), получим(c
+ vo)
=
ct ;(c
- vo)t = c
.Перемножая
эти два равенства, получим =
1/(1 - 2)0,5 , где
величину = vo /c называют
относительной скоростью.
Исключая из равенств (7.2) и (7.3) координату x, получим
t = +/ c /
Подставляя в эту формулу и в формулу (7.2) выражения для и, получим окончательно формулы для связи координат и времени :
(7.4)
Полученные формулы называют преобразованиями Лоренца. Ученый Лоренц впервые получил эти формулы и показал, что если уравнения Максвелла преобразовать подстановкой (7.4), то их вид останется прежним и эти уравнения подчиняются принципу относительности. Эйнштейн предположил, что все физические законы не должны меняться от преобразований Лоренца.
Преобразования Лоренца при малых скоростях движения ( 0) переходят в преобразования Галилея, которые являются предельным случаем преобразований Лоренца. Из преобразований Лоренца следует, что как пространственные, так и временные преобразования не являются независимыми. Таким образом, теория Эйнштейна оперирует не с трехмерным пространством, а рассматривает неразрывно связанные пространственные и временные координаты, образующие четырехмерное пространство-время.
Теорию относительности часто называют релятивистской теорией, а специфические явления, описываемые этой теорий, - релятивистскими эффектами.
