- •Содержание:
- •Тема 1. Множества. 6
- •Тема 2. Функция. 11
- •Тема 3. Числовая последовательность.Предел числовой
- •Тема 4. Предел функции. 38
- •Множества и операции над ними.
- •Числовые множества.
- •Числовые промежутки.
- •Окрестность точки.
- •Задания для самостоятельной работы по теме «Множества».
- •Тема2. Функция. Понятие функции.
- •Способы задания функции.
- •Основные характеристики функции.
- •Обратная функция.
- •Сложная функция.
- •Основные элементарные функции и их графики.
- •Неявная функция.
- •Функция, заданная параметрически.
- •Задания для самостоятельной работыпо теме «Функция».
- •Тема3. Числовая последовательность. Предел числовой последовательности. Понятие числовой последовательности.
- •Предел числовой последовательности.
- •Бесконечно малые и бесконечно большие числовые последовательности.
- •Основные свойства предела числовой последовательности.
- •Операции над пределами числовых последовательностей.
- •Свойства бесконечно малых числовых последовательностей.
- •Задания для самостоятельной работыпо теме «Числовая последовательность. Предел числовой последовательности».
- •Тема4. Предел функции. Предел функции в точке.
- •Предел функции на бесконечности.
- •Бесконечно малые и бесконечно большие функции.
- •Односторонние пределы.
- •Основные теоремы о пределах функции.
- •Теоремы о бесконечно малых и бесконечно больших функциях.
- •Теоремы о предельном переходе.
- •Некоторые приемы раскрытия неопределенностей при вычислении пределов.
- •Задания для самостоятельной работыпо теме «Предел функции».
- •Тема5. Замечательные пределы. Первый замечательный предел.
- •Второй замечательный предел.
- •Задания для самостоятельной работыпо теме «Замечательные пределы».
- •Тема6. Эквивалентные бесконечно малые функции. Классификация бесконечно малых функций.
- •Применение эквивалентных бесконечно малых функций.
- •Задания для самостоятельной работыпо теме «Эквивалентные бесконечно малые функции».
- •Тема7. Непрерывность фунции. Понятие непрерывности функции.
- •Точки разрыва и их классификация.
- •Основные теоремы о непрерывных функциях.
- •Свойства функций, непрерывных на отрезке.
- •Задания для самостоятельной работыпо теме «Непрерывность функции».
- •Тема 8. Производная функции. Понятие производной.
- •Основные правила дифференцирования.
- •Производная сложной функции.
- •Логарифмическое дифференцирование.
- •Производная неявной функции.
- •Производная функции, заданной параметрически.
- •Геометрический и физический смысл производной функции.
- •Задания для самостоятельной работыпо теме «Производная функции».
- •Тема 9. Дифференциал функции. Понятие дифференциала.
- •Основные правила нахождения дифференциалов.
- •Задания для самостоятельной работыпо теме «Дифференциал функции».
- •Тема 10. Производные и дифференциалы высших порядков. Производные высших порядков.
- •Дифференциалы высших порядков.
- •Задания для самостоятельной работыпо теме
- •Тема 11. Приложения дифференциального исчисления. Применение дифференциала к приближенным вычислениям.
- •Теоремы о среднем дифференциального исчисления.
- •Формула Тейлора.
- •Правило Лопиталя.
- •Задания для самостоятельной работыпо теме «Приложения дифференциального исчисления».
- •Тема 12. Исследование поведения функций и построение графиков. Возрастание и убывание функции.
- •Экстремумы функции.
- •Выпуклость и вогнутость графика функции. Точки перегиба.
- •Асимптоты графика функции.
- •Общая схема исследования функции и построение ее графика.
- •Задания для самостоятельной работыпо теме «Исследование функций и построение графиков».
- •Тема 13. Первообразная функции. Неопределенный интеграл. Понятие первообразной и неопределенного интеграла.
- •Основные свойства неопределенного интеграла.
- •Метод непосредственного интегрирования.
- •Задания для самостоятельной работыпо теме «Первообразная функции. Неопределенный интеграл».
- •Тема14. Интегрирование методом подстановки. Замена переменной и подведение под знак дифференциала.
- •Задания для самостоятельной работы по теме «Интегрирование методом подстановки».
- •Тема15.Интегрирование по частям. Формула интегрирования по частям.
- •Задания для самостоятельной работы по теме «Интегрирование по частям».
- •Тема16. Интегрирование функций, содержащих квадратный трехчлен. Различные приемы интегрирования квадратных трехчленов.
- •Задания для самостоятельной работы по теме «Интегрирование функций, сордержащих квадратный трехчлен».
- •Тема17. Интегрирование рациональных дробей. Интегрирование простейших дробей.
- •Разложение правильной рациональной дроби на сумму простейших рациональных дробей.
- •Интегрирование неправильных рациональных дробей.
- •Задания для самостоятельной работы по теме «Интегрирование рациональных дробей».
- •Тема18. Интегрирование тригонометрических функций. Различные приемы интегрирования тригонометрических функций.
- •Задания для самостоятельной работы по теме «Интегрирование тригонометрических функций».
- •Тема19. Интегрирование иррациональных функций. Различные приемы интегрирования иррациональных функций.
- •1) Если корни в подынтегральном выражении имеют вид ,
- •Задания для самостоятельной работы по теме «Интегрирование иррациональных функций».
- •Ответы к заданиям для самостоятельной работы.
- •Тема 1. Множества.
- •Тема 2. Функция.
- •Тема 3. Числовая последовательность.Предел числовойпоследовательности.
- •Тема 4. Предел функции.
- •Библиографический список.
- •163000, Г.Архангельск, ул. Поморская, XX
Тема15.Интегрирование по частям. Формула интегрирования по частям.
Если
и
− дифференцируемые функции, то справедливо
.
Данная
формула называется формулой
интегрирования по частям.
Она дает возможность свести вычисление
интеграла
к вычислению интеграла
,
который оказывается более простым.
При нахождении интегралов типа
,
,
за
следует принять многочлен
,
а за
− соответственно выражения
,
,
;
при отыскании интегралов вида
,
,
,
,
за
принимаются соответственно функции
,
,
,
,
,
а за
− выражение
.
Примеры 15. Вычислить интегралы:
1)
.
Решение: Воспользуемся формулой интегрирования по частям:
.
2)
.
Решение: Воспользуемся формулой интегрирования по частям:
.
3)
.
Решение: Воспользуемся формулой интегрирования по частям:
.
4)
.
Решение: Воспользуемся формулой интегрирования по частям, получим:
.
К последнему интегралу снова применим формулу интегрирования по частям:
.
Подставляя найденное выражение в первоначальное выражение, имеем
.
5)
.
Решение: Воспользуемся формулой интегрирования по частям:
.
Последний интеграл сновапроинтегрируем раз по частям:
.
Таким образом,
.
В правой части последнего соотношения стоит искомый интеграл . Перенося его в левую часть, получим
.
Откуда
.
Задания для самостоятельной работы по теме «Интегрирование по частям».
Задание. Проинтегрировать по частям следующие интегралы:
15.1.
|
15.2.
|
15.3.
|
15.4.
|
15.5.
|
15.6.
|
15.7.
|
15.8.
|
15.9.
|
15.10.
|
15.11.
|
15.12.
|
15.13.
|
15.14.
|
15.15.
|
Тема16. Интегрирование функций, содержащих квадратный трехчлен. Различные приемы интегрирования квадратных трехчленов.
1.
Интегралы вида
.
Основной прием вычисления таких интегралов − выделение полного квадрата из квадратного трехчлена, стоящего в знаменателе, и разложение полученного интеграла на сумму двух интегралов.
2.
Интегралы вида
.
Прием вычисления таких интегралов тот же – следует выделить полный квадрат из квадратного трехчлена подкоренного выражения и разложить на сумму двух интегралов.
Примеры 16. Вычислить интегралы:
1)
.
Решение:Выделим из квадратного трехчлена полный квадрат:
.
Отсюда находим
.
2)
.
Решение: Выделяем полный квадрат из квадратного трехчлена, получаем
.
Следовательно,
.
3)
.
Решение: Выделяя полный квадрат из квадратного трехчлена, имеем
.
Отсюда получаем
.
4)
.
Решение: Сначала выделим полный квадрат из квадратного трехчлена
.
Таким образом,
.
Задания для самостоятельной работы по теме «Интегрирование функций, сордержащих квадратный трехчлен».
Задание. Вычислить следующие интегралы:
16.1.
|
16.2.
|
16.3.
|
16.4.
|
16.5.
|
16.6.
|
16.7.
|
16.8.
|
16.9.
|
16.10.
|

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.