- •Содержание:
- •Тема 1. Множества. 6
- •Тема 2. Функция. 11
- •Тема 3. Числовая последовательность.Предел числовой
- •Тема 4. Предел функции. 38
- •Множества и операции над ними.
- •Числовые множества.
- •Числовые промежутки.
- •Окрестность точки.
- •Задания для самостоятельной работы по теме «Множества».
- •Тема2. Функция. Понятие функции.
- •Способы задания функции.
- •Основные характеристики функции.
- •Обратная функция.
- •Сложная функция.
- •Основные элементарные функции и их графики.
- •Неявная функция.
- •Функция, заданная параметрически.
- •Задания для самостоятельной работыпо теме «Функция».
- •Тема3. Числовая последовательность. Предел числовой последовательности. Понятие числовой последовательности.
- •Предел числовой последовательности.
- •Бесконечно малые и бесконечно большие числовые последовательности.
- •Основные свойства предела числовой последовательности.
- •Операции над пределами числовых последовательностей.
- •Свойства бесконечно малых числовых последовательностей.
- •Задания для самостоятельной работыпо теме «Числовая последовательность. Предел числовой последовательности».
- •Тема4. Предел функции. Предел функции в точке.
- •Предел функции на бесконечности.
- •Бесконечно малые и бесконечно большие функции.
- •Односторонние пределы.
- •Основные теоремы о пределах функции.
- •Теоремы о бесконечно малых и бесконечно больших функциях.
- •Теоремы о предельном переходе.
- •Некоторые приемы раскрытия неопределенностей при вычислении пределов.
- •Задания для самостоятельной работыпо теме «Предел функции».
- •Тема5. Замечательные пределы. Первый замечательный предел.
- •Второй замечательный предел.
- •Задания для самостоятельной работыпо теме «Замечательные пределы».
- •Тема6. Эквивалентные бесконечно малые функции. Классификация бесконечно малых функций.
- •Применение эквивалентных бесконечно малых функций.
- •Задания для самостоятельной работыпо теме «Эквивалентные бесконечно малые функции».
- •Тема7. Непрерывность фунции. Понятие непрерывности функции.
- •Точки разрыва и их классификация.
- •Основные теоремы о непрерывных функциях.
- •Свойства функций, непрерывных на отрезке.
- •Задания для самостоятельной работыпо теме «Непрерывность функции».
- •Тема 8. Производная функции. Понятие производной.
- •Основные правила дифференцирования.
- •Производная сложной функции.
- •Логарифмическое дифференцирование.
- •Производная неявной функции.
- •Производная функции, заданной параметрически.
- •Геометрический и физический смысл производной функции.
- •Задания для самостоятельной работыпо теме «Производная функции».
- •Тема 9. Дифференциал функции. Понятие дифференциала.
- •Основные правила нахождения дифференциалов.
- •Задания для самостоятельной работыпо теме «Дифференциал функции».
- •Тема 10. Производные и дифференциалы высших порядков. Производные высших порядков.
- •Дифференциалы высших порядков.
- •Задания для самостоятельной работыпо теме
- •Тема 11. Приложения дифференциального исчисления. Применение дифференциала к приближенным вычислениям.
- •Теоремы о среднем дифференциального исчисления.
- •Формула Тейлора.
- •Правило Лопиталя.
- •Задания для самостоятельной работыпо теме «Приложения дифференциального исчисления».
- •Тема 12. Исследование поведения функций и построение графиков. Возрастание и убывание функции.
- •Экстремумы функции.
- •Выпуклость и вогнутость графика функции. Точки перегиба.
- •Асимптоты графика функции.
- •Общая схема исследования функции и построение ее графика.
- •Задания для самостоятельной работыпо теме «Исследование функций и построение графиков».
- •Тема 13. Первообразная функции. Неопределенный интеграл. Понятие первообразной и неопределенного интеграла.
- •Основные свойства неопределенного интеграла.
- •Метод непосредственного интегрирования.
- •Задания для самостоятельной работыпо теме «Первообразная функции. Неопределенный интеграл».
- •Тема14. Интегрирование методом подстановки. Замена переменной и подведение под знак дифференциала.
- •Задания для самостоятельной работы по теме «Интегрирование методом подстановки».
- •Тема15.Интегрирование по частям. Формула интегрирования по частям.
- •Задания для самостоятельной работы по теме «Интегрирование по частям».
- •Тема16. Интегрирование функций, содержащих квадратный трехчлен. Различные приемы интегрирования квадратных трехчленов.
- •Задания для самостоятельной работы по теме «Интегрирование функций, сордержащих квадратный трехчлен».
- •Тема17. Интегрирование рациональных дробей. Интегрирование простейших дробей.
- •Разложение правильной рациональной дроби на сумму простейших рациональных дробей.
- •Интегрирование неправильных рациональных дробей.
- •Задания для самостоятельной работы по теме «Интегрирование рациональных дробей».
- •Тема18. Интегрирование тригонометрических функций. Различные приемы интегрирования тригонометрических функций.
- •Задания для самостоятельной работы по теме «Интегрирование тригонометрических функций».
- •Тема19. Интегрирование иррациональных функций. Различные приемы интегрирования иррациональных функций.
- •1) Если корни в подынтегральном выражении имеют вид ,
- •Задания для самостоятельной работы по теме «Интегрирование иррациональных функций».
- •Ответы к заданиям для самостоятельной работы.
- •Тема 1. Множества.
- •Тема 2. Функция.
- •Тема 3. Числовая последовательность.Предел числовойпоследовательности.
- •Тема 4. Предел функции.
- •Библиографический список.
- •163000, Г.Архангельск, ул. Поморская, XX
Задания для самостоятельной работыпо теме «Предел функции».
Задание 1. Используя определение предела, доказать, что:
1.1.
|
1.2.
|
1.3.
|
1.4.
|
1.5.
|
1.6.
|
1.7.
|
1.8.
|
1.9.
|
Задание 2. Найти пределы:
2.1.
|
2.2.
|
2.3.
|
2.4.
|
2.5.
|
2.6.
|
2.7.
|
2.8.
|
2.9.
|
2.10. |
2.11. |
2.12.
|
2.13.
|
2.14.
|
2.15.
|
2.16.
|
2.17.
|
2.18.
|
2.19.
|
2.20.
|
2.21.
|
2.22.
|
2.23.
|
2.24.
|
2.25.
|
2.26. |
2.27.
|
2.28.
|
2.29.
|
2.30.
|
2.31.
|
2.32.
|
2.33.
|
2.34.
|
2.35. |
2.36.
|
2.37.
|
2.38.
|
2.39.
|
2.40.
|
2.41.
|
2.42. |
2.43. |
2.44. |
2.45.
|
Задание 3. Найти односторонние пределы:
3.1.
|
3.2.
|
3.3.
|
3.4.
|
3.5.
|
3.6.
|
3.7.
|
3.8.
|
3.9.
|
Тема5. Замечательные пределы. Первый замечательный предел.
Определение 5.1. Первый замечательный предел – это предел вида
.
Данный предел часто используют при вычислении пределов выражений, содержащих тригонометрические функции и имеющих неопределенность . В этих случаях с помощью преобразований выражения под знаком предела необходимо привести его к виду первого замечательного предела, т.е. к отношению синуса некоторого аргумента к этому аргументу при стремлении последнего к нулю.
Примеры 5.1. Вычислить пределы:
1)
(первый замечательный предел).
2)
.
Решение: Умножим числитель и знаменатель дроби на 3, чтобы образовать первый замечательный предел:
.
3)
.
Решение:
Умножим
числитель и знаменатель дроби на
,
чтобы образовать первый замечательный
предел:
.
4)
.
Решение: Для того чтобы образовать первый замечательный предел, сперва преобразуем числитель дроби с помощью тригонометрических тождеств:
5)
.
Решение: Для того чтобы привести к первому замечательному пределу, сперва сделаем замену переменных:
Замечание
5.1.
При вычислении пределов также полезно
использовать следующие следствияиз
первого замечательного предела (здесь
–
постоянные числа):
1.
|
2.
|
3.
|
4.
|
5.
|
6.
|

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.