
EP / Теория ЭП Драчев
.pdf
ȼ ɞɚɥɶɧɟɣɲɟɦ ɢɡɦɟɧɟɧɢɟ ɫɤɨɪɨɫɬɢ ɛɭɞɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɦɨɦɟɧɬɚ ɞɜɢɝɚɬɟɥɹ, ɹɜɥɹɸɳɟɝɨɫɹ ɨɫɧɨɜɧɵɦ ɭɩɪɚɜɥɹɸɳɢɦ ɜɨɡɞɟɣɫɬɜɢɟɦ ɷɥɟɤɬɪɨɩɪɢɜɨɞɚ.
Ɋɢɫ. 2.12. Ɇɟɯɚɧɢɱɟɫɤɢɣ ɩɟɪɟɯɨɞɧɵɣ ɩɪɨɰɟɫɫ ɩɪɢ ɫɢɧɭɫɨɢɞɚɥɶɧɨɦ ɢɡɦɟɧɟɧɢɢ ɦɨɦɟɧɬɚ Ɇ(t)
ɉɪɢ ɪɟɚɤɬɢɜɧɨɦ ɫɬɚɬɢɱɟɫɤɨɦ ɦɨɦɟɧɬɟ ɞɨ M MC ɞɜɢɝɚɬɟɥɶ ɛɭɞɟɬ ɫɬɨɹɬɶ, ɬɚɤ
ɤɚɤ ɧɟ ɫɩɨɫɨɛɟɧ ɪɚɡɨɝɧɚɬɶ ɞɜɢɝɚɬɟɥɶ ɜ ɨɛɪɚɬɧɭɸ ɫɬɨɪɨɧɭ. ɉɪɨɰɟɫɫ ɩɭɫɤɚ ɧɚɱɧɟɬɫɹ ɫ ɬɨɝɨ ɦɨɦɟɧɬɚ ɜɪɟɦɟɧɢ, ɤɨɝɞɚ ɦɨɦɟɧɬ ɞɜɢɝɚɬɟɥɹ ɩɪɟɜɵɫɢɬ ɪɟɚɤɬɢɜɧɵɣ ɫɬɚ-
ɬɢɱɟɫɤɢɣ ɦɨɦɟɧɬ Ɇ > MC . Ɂɚɤɨɧ ɢɡɦɟɧɟɧɢɹ ɫɤɨɪɨɫɬɢ ɞɥɹ ɪɟɚɤɬɢɜɧɨɝɨ ɫɬɚɬɢɱɟɫɤɨɝɨ ɦɨɦɟɧɬɚ ɧɭɠɧɨ ɜɵɜɟɫɬɢ ɫɚɦɨɫɬɨɹɬɟɥɶɧɨ.
2.7. Ɇɟɯɚɧɢɱɟɫɤɚɹ ɱɚɫɬɶ ɷɥɟɤɬɪɨɩɪɢɜɨɞɚ
ɫ ɭɩɪɭɝɨɣ ɫɜɹɡɶɸ
Ⱦɨ ɫɢɯ ɩɨɪ ɪɚɫɫɦɚɬɪɢɜɚɥɢɫɶ ɦɟɯɚɧɢɱɟɫɤɢɟ ɫɢɫɬɟɦɵ ɫ ɢɞɟɚɥɶɧɨ ɠɟɫɬɤɢɦɢ ɫɜɹɡɹɦɢ. ɉɪɚɤɬɢɱɟɫɤɢ ɠɟɫɬɤɨɫɬɢ ɜɚɥɨɜ, ɫɨɟɞɢɧɢɬɟɥɶɧɵɯ ɦɭɮɬ, ɩɟɪɟɞɚɱ (ɤɚɧɚɬɵ, ɪɟɦɧɢ, ɜɚɥɵ ɜ ɩɟɪɟɞɚɱɚɯ ɢ ɬ.ɩ.) ɤɨɧɟɱɧɵ, ɦɟɯɚɧɢɱɟɫɤɚɹ ɫɢɫɬɟɦɚ ɩɨɥɭɱɚɟɬ ɧɟɫɤɨɥɶɤɨ ɫɬɟɩɟɧɟɣ ɫɜɨɛɨɞɵ, ɢ ɜ ɨɛɳɟɦ ɫɥɭɱɚɟ ɫɨɞɟɪɠɢɬ ɬɟɥɚ, ɩɨɞɜɟɪɝɚɸɳɢɟɫɹ ɤɪɭɱɟɧɢɸ, ɢɡɝɢɛɭ, ɪɚɫɬɹɠɟɧɢɸ ɢ ɫɠɚɬɢɸ.
ɀɟɫɬɤɨɫɬɶɸ ɛɭɞɟɦ ɧɚɡɵɜɚɬɶ ɤɨɷɮɮɢɰɢɟɧɬ ɫɜɹɡɢ ɋɄ (ɋɅ) ɦɟɠɞɭ ɭɝɥɨɜɨɣ ɞɟɮɨɪɦɚɰɢɟɣ ɜɚɥɚ ǻij (ɢɥɢ ɥɢɧɟɣɧɨɣ ɞɟɮɨɪɦɚɰɢɟɣ ǻL) ɢ ɜɨɡɧɢɤɚɸɳɢɦ ɜ ɭɩɪɭɝɨɦ ɷɥɟɦɟɧɬɟ ɭɩɪɭɝɢɦ ɦɨɦɟɧɬɨɦ Ɇɍ (ɢɥɢ ɭɩɪɭɝɨɣ ɫɢɥɨɣ Fɍ). Ȼɭɞɟɦ ɪɚɫɫɦɚɬɪɢɜɚɬɶ ɥɢɧɟɣɧɵɣ ɡɚɤɨɧ ɞɟɮɨɪɦɚɰɢɢ (ɡɚɤɨɧ Ƚɭɤɚ). ȼ ɷɬɨɦ ɫɥɭɱɚɟ ɩɪɢɥɨɠɟɧɢɟ ɭɩɪɭɝɨɝɨ ɦɨɦɟɧɬɚ ɧɟ ɩɪɢɜɨɞɢɬ ɤ ɨɫɬɚɬɨɱɧɵɦ ɞɟɮɨɪɦɚɰɢɹɦ, ɚ ɩɪɢ ɫɧɹɬɢɢ ɦɨɦɟɧɬɚ ɧɚ ɜɯɨɞɟ ɫɢɫɬɟɦɚ ɜɨɡɜɪɚɳɚɟɬɫɹ ɜ ɢɫɯɨɞɧɨɟ ɩɨɥɨɠɟɧɢɟ.
Ɇɍ |
ɋɄ ǻij, |
(2.47) |
Fɍ |
ɋɅ 'L . |
(2.48) |
31
Ʉɨɷɮɮɢɰɢɟɧɬɵ ɠɺɫɬɤɨɫɬɢ ɋɄ ɢ ɋɅ ɨɩɪɟɞɟɥɹɸɬɫɹ ɝɟɨɦɟɬɪɢɱɟɫɤɢɦɢ ɪɚɡɦɟ-
ɪɚɦɢ ɭɩɪɭɝɨɝɨ ɷɥɟɦɟɧɬɚ ɢ ɡɚɜɢɫɹɬ ɨɬ ɦɚɬɟɪɢɚɥɚ, ɢɡ ɤɨɬɨɪɨɝɨ ɨɧ ɢɡɝɨɬɨɜɥɟɧ. Ⱦɥɹ ɜɚɥɚ ɪɚɞɢɭɫɨɦ R ɩɪɢ ɟɝɨ ɤɪɭɱɟɧɢɢ ɤɨɷɮɮɢɰɢɟɧɬ ɠɺɫɬɤɨɫɬɢ
|
|
CK JS |
G ªMH ɦº |
|||
|
|
|
« |
|
», |
|
|
|
|
||||
|
|
|
L ¬ ɪɚɞ |
¼ |
||
|
ʌ R4 |
|
|
|
|
|
ɝɞɟ J |
|
– ɦɨɦɟɧɬ ɢɧɟɪɰɢɢ ɩɨɩɟɪɟɱɧɨɝɨ ɫɟɱɟɧɢɹ ɜɚɥɚ; |
||||
|
||||||
S |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
G – ɦɨɞɭɥɶ ɭɩɪɭɝɨɫɬɢ ɫɞɜɢɝɚ; |
|
|
|
|
||
L – ɞɥɢɧɚ ɜɚɥɚ. |
|
|
|
|
||
Ⱦɥɹ ɭɩɪɭɝɨɝɨ ɫɬɟɪɠɧɹ ɩɪɢ ɟɝɨ ɪɚɫɬɹɠɟɧɢɢ ɢɥɢ ɫɠɚɬɢɢ ɤɨɷɮɮɢɰɢɟɧɬ ɠɺɫɬɤɨ- |
ɫɬɢ
|
GS E ªɇɆº |
, |
|||
ɋɅ |
|
« |
|
» |
|
L |
|
||||
|
¬ |
ɦ ¼ |
|
ɝɞɟ L – ɞɥɢɧɚ ɫɬɟɪɠɧɹ;
GS – ɩɥɨɳɚɞɶ ɩɨɩɟɪɟɱɧɨɝɨ ɫɟɱɟɧɢɹ;
E – ɦɨɞɭɥɶ ɭɩɪɭɝɨɫɬɢ.
ȼɟɥɢɱɢɧɭ 1/ɋ, ɨɛɪɚɬɧɭɸ ɠɟɫɬɤɨɫɬɢ, ɧɚɡɵɜɚɸɬ ɩɨɞɚɬɥɢɜɨɫɬɶɸ. Ɏɢɡɢɱɟɫɤɢ ɩɨɞɚɬɥɢɜɨɫɬɶ ɨɩɪɟɞɟɥɹɟɬ ɞɟɮɨɪɦɚɰɢɸ ɷɥɟɦɟɧɬɚ ɩɨɞ ɜɨɡɞɟɣɫɬɜɢɟɦ ɭɩɪɭɝɨɝɨ ɦɨɦɟɧɬɚ, ɚ ɤɨɷɮɮɢɰɢɟɧɬ ɠɟɫɬɤɨɫɬɢ – ɜɟɥɢɱɢɧɭ ɭɩɪɭɝɨɝɨ ɦɨɦɟɧɬɚ ɩɪɢ ɨɩɪɟɞɟɥɟɧɧɨɣ ɞɟɮɨɪɦɚɰɢɢ.
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɱɟɦ ɛɨɥɶɲɟ ɤɨɷɮɮɢɰɢɟɧɬ ɠɺɫɬɤɨɫɬɢ ɭɩɪɭɝɨɝɨ ɷɥɟɦɟɧɬɚ, ɬɟɦ ɦɟɧɶɲɚɹ ɞɟɮɨɪɦɚɰɢɹ ɜ ɧɺɦ ɜɨɡɧɢɤɚɟɬ.
2.7.1.ɉɪɢɜɟɞɟɧɢɟ ɭɩɪɭɝɨɫɬɢ ɤ ɜɚɥɭ ɞɜɢɝɚɬɟɥɹ
ɉɪɢ ɫɨɫɬɚɜɥɟɧɢɢ ɪɚɫɱɺɬɧɵɯ ɫɯɟɦ ɦɟɯɚɧɢɱɟɫɤɨɣ ɱɚɫɬɢ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɩɪɢɜɟɞɟɧɢɟ ɤ ɜɚɥɭ ɞɜɢɝɚɬɟɥɹ ɤɨɷɮɮɢɰɢɟɧɬɚ ɠɟɫɬɤɨɫɬɢ ɭɩɪɭɝɨɝɨ ɷɥɟɦɟɧɬɚ. Ʉɪɢɬɟɪɢɟɦ ɩɪɢɜɟɞɟɧɢɹ ɹɜɥɹɟɬɫɹ ɪɚɜɟɧɫɬɜɨ ɡɚɩɚɫɚ ɩɨɬɟɧɰɢɚɥɶɧɨɣ ɷɧɟɪɝɢɢ ɜ ɪɟɚɥɶɧɨɣ ɢ ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɚɯ.
Ⱦɥɹ ɜɪɚɳɚɬɟɥɶɧɨɝɨ ɞɜɢɠɟɧɢɹ ɩɨɬɟɧɰɢɚɥɶɧɚɹ ɷɧɟɪɝɢɹ ɞɥɹ ɩɪɢɜɟɞɟɧɧɨɝɨ ɢ ɪɟɚɥɶɧɨɝɨ ɡɜɟɧɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɟ
Wɉ |
|
|
ǻijɉɊ2 |
|
|
ǻiji2 |
, |
ɋɉɊ |
|
ɋɄ |
|
||||
|
|
2 |
|
2 |
|
ɬɨɝɞɚ ɩɪɢɜɟɞɟɧɧɚɹ ɠɟɫɬɤɨɫɬɶ
|
|
|
|
§ |
ǻij2 |
· |
|
|
|
1 |
|
|
|
C |
|
|
|
¨ |
i |
¸ |
|
|
|
. |
(2.49) |
||
|
ɋ |
|
2 |
ɋ |
|
|
|||||||
|
ɉɊ |
|
Ʉ |
¨ |
¸ |
|
Ʉ |
|
|
2 |
|
||
|
|
|
|
© |
ǻijɉɊ ¹ |
|
|
|
i |
|
|
|
Ⱦɥɹ ɩɨɫɬɭɩɚɬɟɥɶɧɨɝɨ ɞɜɢɠɟɧɢɹ ɩɨɬɟɧɰɢɚɥɶɧɚɹ ɷɧɟɪɝɢɹ ɞɥɹ ɩɪɢɜɟɞɟɧɧɨɝɨ ɢ ɪɟɚɥɶɧɨɝɨ ɡɜɟɧɚ
Wɉ |
|
|
ǻijɉɊ2 |
|
|
ǻL2i |
, |
ɋɉɊ |
|
ɋɄ |
|
||||
|
|
2 |
|
2 |
|
32

ɬɨɝɞɚ ɩɪɢɜɟɞɟɧɧɚɹ ɠɟɫɬɤɨɫɬɶ ɨɩɪɟɞɟɥɢɬɫɹ ɤɚɤ
|
|
|
|
§ |
ǻL2 · |
|
|
|
|
|
C |
|
|
|
¨ |
i |
¸ |
|
|
ȡ2 . |
(2.50) |
|
ɋ |
|
|
ɋ |
|
|||||
|
ɉɊ |
|
Ʌ |
¨ |
2 ¸ |
|
Ʌ |
|
||
|
|
|
|
© |
ǻijɉɊ ¹ |
|
|
|
|
2.7.2. ɉɪɢɜɟɞɟɧɢɟ ɦɧɨɝɨɦɚɫɫɨɜɨɣ ɭɩɪɭɝɨɣ ɫɢɫɬɟɦɵ ɤ ɞɜɭɯɦɚɫɫɨɜɨɣ
Ɋɚɫɫɦɨɬɪɢɦ ɭɩɪɭɝɭɸ ɫɢɫɬɟɦɭ ɫ ɨɞɧɢɦ ɭɩɪɭɝɢɦ ɷɥɟɦɟɧɬɨɦ – ɫɯɟɦɭ ɷɥɟɤɬɪɨɩɪɢɜɨɞɚ ɜɟɧɬɢɥɹɬɨɪɚ (ɪɢɫ. 2.13).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɉɪɢ ɧɚɥɢɱɢɢ ɭɩɪɭɝɢɯ ɷɥɟɦɟɧɬɨɜ ɧɟ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ȼ |
ɜɫɟɝɞɚ ɭɞɚɺɬɫɹ ɩɨɥɭɱɢɬɶ ɨɞɧɨɦɚɫɫɨ- |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɜɭɸ ɪɚɫɱɺɬɧɭɸ ɫɯɟɦɭ, ɢ ɜ ɡɚɜɢɫɢɦɨɫɬɢ |
|
|
|
|
Ⱦ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɨɬ ɱɢɫɥɚ ɭɩɪɭɝɢɯ ɷɥɟɦɟɧɬɨɜ ɩɨɥɭɱɚɸɬ- |
|
|
|
|
|
|
|
|
|
|
|
|
|
ɋɄ |
ɫɹ ɦɧɨɝɨɦɚɫɫɨɜɵɟ ɦɟɯɚɧɢɱɟɫɤɢɟ ɫɢɫ- |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɬɟɦɵ – ɞɜɭɯɦɚɫɫɨɜɚɹ, ɬɪɟɯɦɚɫɫɨɜɚɹ ɢ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɬ. ɞ. |
|
|
Ɋɢɫ. 2.13. Ʉɢɧɟɦɚɬɢɱɟɫɤɚɹ ɫɯɟɦɚ |
ȼ ɤɢɧɟɦɚɬɢɱɟɫɤɨɣ ɫɯɟɦɟ |
ɜɟɧɬɢɥɹ- |
||||||||||||||||
|
ɬɨɪɚ ɦɨɠɧɨ ɪɚɫɫɦɨɬɪɟɬɶ ɱɟɬɵɪɟ ɦɚɫ- |
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
ɜɟɧɬɢɥɹɬɨɪɚ |
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɫɵ ɫ ɦɨɦɟɧɬɚɦɢ ɢɧɟɪɰɢɢ: ɪɨɬɨɪɚ ɞɜɢ- |
|
|
|
|
|
|
J1 |
|
|
J2 |
|
|
|
ɝɚɬɟɥɹ į·JȾȼ, ɩɨɥɭɦɭɮɬ J1 ɢ J2, ɪɚɛɨɱɟ- |
|||||||
į JȾȼ |
|
|
|
|
|
|
|
|
ɝɨ ɤɨɥɟɫɚ JɉɊ, ɫɨɟɞɢɧɟɧɧɵɟ |
ɬɪɟɦɹ ɭɩ- |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
JɉɊ |
ɪɭɝɢɦɢ ɷɥɟɦɟɧɬɚɦɢ: ɜɚɥɨɦ ɞɜɢɝɚɬɟɥɹ |
|||||
|
C1 |
|
|
C2 |
|
|
|
C3 |
|||||||||||
|
|
|
|
|
|
|
|
ɞɨ ɩɨɥɭɦɭɮɬɵ ɠɟɫɬɤɨɫɬɶɸ ɋ1, ɭɩɪɭɝɨɣ |
|||||||||||
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
||||||||||
Ɋɢɫ. 2.14. ɑɟɬɵɪɟɯɦɚɫɫɨɜɚɹ ɭɩɪɭɝɚɹ |
ɦɭɮɬɨɣ – ɋ2, ɜɚɥɨɦ ɜɟɧɬɢɥɹɬɨɪɚ ɞɨ |
||||||||||||||||||
ɪɚɛɨɱɟɝɨ ɤɨɥɟɫɚ – ɋ3. ɉɨɥɭɱɢɥɢ ɱɟɬɵ- |
|||||||||||||||||||
|
|
|
|
|
ɫɢɫɬɟɦɚ |
ɪɟɯɦɚɫɫɨɜɭɸ ɫɢɫɬɟɦɭ (ɪɢɫ. 2.14), ɜ ɤɨ- |
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɬɨɪɨɣ ɜɪɚɳɚɸɳɢɟɫɹ ɦɚɫɫɵ ɫɨɟɞɢɧɟɧɵ |
|
|
|
|
|
|
|
|
ɋ12 |
|
|
|
|
|
|
|
|
|
ɨɬɪɟɡɤɚɦɢ, ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɵɦɢ ɩɨɞɚɬ- |
||
|
įǜJȾȼ |
|
|
|
|
|
|
|
|
JɉɊ |
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
ɥɢɜɨɫɬɹɦ ɜɚɥɨɜ. |
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ɉɛɵɱɧɨ ɦɧɨɝɨɦɚɫɫɨɜɭɸ |
ɫɢɫɬɟɦɭ |
|
|
|
|
|
|
|
|
|
M12 |
ɩɪɢɜɨɞɹɬ ɤ ɧɚɢɛɨɥɟɟ ɩɨɞɚɬɥɢɜɨɦɭ ɡɜɟ- |
|||||||||
|
|
|
|
|
|
|
|
|
ɧɭ (ɜ ɧɚɲɟɦ ɫɥɭɱɚɟ – ɋ2), ɩɪɢ ɷɬɨɦ |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
įǜJȾȼ |
|
|
|
|
|
|
|
|
JɉɊ |
ɜɪɚɳɚɸɳɢɟɫɹ ɦɚɫɫɵ ɫ ɦɚɥɵɦɢ ɦɨɦɟɧ- |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɬɚɦɢ ɢɧɟɪɰɢɢ ɩɪɢɫɨɟɞɢɧɹɸɬ ɤ ɝɥɚɜɧɵɦ |
|
|
|
|
|
|
|
ɋ |
12 |
|
|
|
|
|
|
|
|
|
|
ɦɚɫɫɚɦ ɫ ɝɨɪɚɡɞɨ ɛɨɥɶɲɢɦɢ ɦɨɦɟɧɬɚ- |
|
|
Ȧ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
1 |
|
|
|
|
|
|
|
Ȧ2 |
|||||||||||
|
|
|
|
|
|
|
|
||||||||||||
M |
|
ǻMC |
|
|
|
|
|
|
|
|
Mɋ |
ɦɢ ɢɧɟɪɰɢɢ. ȼ ɫɯɟɦɟ ɜɟɧɬɢɥɹɬɨɪɚ ɨɬ- |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɧɟɫɟɦ J1 ɤ į·JȾȼ, ɚ J2 – ɤ JɉɊ ɢ ɩɨɥɭɱɢɦ |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ɋɢɫ. 2.15. Ɋɚɫɱɟɬɧɚɹ ɫɯɟɦɚ |
ɞɜɭɯɦɚɫɫɨɜɭɸ ɭɩɪɭɝɭɸ ɫɢɫɬɟɦɭ (ɪɢɫ. |
|
2.15). ȼ ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɟ ɪɚɫɫɦɚɬɪɢɜɚ- |
||
|
||
ɞɜɭɯɦɚɫɫɨɜɨɣ ɭɩɪɭɝɨɣ ɫɢɫɬɟɦɵ |
ɟɦ ɝɥɚɜɧɵɟ ɦɚɫɫɵ į·JȾȼ ɢ JɉɊ. ɗɤɜɢɜɚ- |
|
|
||
|
ɥɟɧɬɧɭɸ ɠɟɫɬɤɨɫɬɶ ɋ12 ɞɜɭɯɦɚɫɫɨɜɨɣ |
ɭɩɪɭɝɨɣ ɫɢɫɬɟɦɵ ɨɩɪɟɞɟɥɹɸɬ ɱɟɪɟɡ ɫɭɦɦɭ ɩɨɞɚɬɥɢɜɨɫɬɟɣ ɭɩɪɭɝɢɯ ɷɥɟɦɟɧɬɨɜ ɪɟɚɥɶɧɨɣ ɫɯɟɦɵ
1 |
|
1 |
|
1 |
|
1 |
. |
(2.51) |
|
|
|
|
|||||
ɋɗɄȼ |
|
ɋ1 |
ɋ2 |
ɋ3 |
|
Ƚɥɚɜɧɚɹ ɦɚɫɫɚ į·JȾȼ ɜɪɚɳɚɟɬɫɹ ɫɨ ɫɤɨɪɨɫɬɶɸ Ȧ1, ɤ ɧɟɣ ɩɪɢɥɨɠɟɧ ɦɨɦɟɧɬ ɞɜɢɝɚɬɟɥɹ Ɇ ɢ ɦɨɦɟɧɬ ɫɬɚɬɢɱɟɫɤɢɣ ǻɆɋ. Ƚɥɚɜɧɚɹ ɦɚɫɫɚ JɉɊ ɜɪɚɳɚɟɬɫɹ ɫɨ ɫɤɨɪɨɫɬɶɸ
33

Ȧ2, ɤ ɧɟɣ ɩɪɢɥɨɠɟɧ ɦɨɦɟɧɬ Ɇɋ. Ɋɚɡɪɟɠɟɦ ɫɢɫɬɟɦɭ ɩɨ ɭɩɪɭɝɨɦɭ ɷɥɟɦɟɧɬɭ, ɜ ɦɟɫɬɟ ɪɚɡɪɟɡɚ ɩɪɢɥɨɠɢɦ ɩɚɪɭ ɦɨɦɟɧɬɨɜ Ɇ12. Ɇɨɦɟɧɬ Ɇ12 ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɦɨɦɟɧɬ ɭɩɪɭɝɨɝɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɦɟɠɞɭ ɝɥɚɜɧɵɦɢ ɦɚɫɫɚɦɢ į·JȾȼ ɢ JɉɊ.
2.7.3.ɍɪɚɜɧɟɧɢɹ ɞɜɢɠɟɧɢɹ ɢ ɫɬɪɭɤɬɭɪɧɚɹ ɫɯɟɦɚ ɞɜɭɯɦɚɫɫɨɜɨɣ ɭɩɪɭɝɨɣ ɫɢɫɬɟɦɵ
Ⱦɜɢɠɟɧɢɟ ɞɜɭɯɦɚɫɫɨɜɨɣ ɭɩɪɭɝɨɣ ɫɢɫɬɟɦɵ (Ⱦɍɋ) ɨɩɢɫɵɜɚɟɬɫɹ ɫɢɫɬɟɦɨɣ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɵɯ ɭɪɚɜɧɟɧɢɣ (ɪɢɫ.2.15):
Ɇ 'Ɇ į J |
|
|
|
dȦ1 |
M , |
|||
|
|
|
|
|||||
|
ɋ |
|
Ⱦȼ |
|
dt |
12 |
||
M |
M |
J |
|
dȦ2 |
, |
|
||
|
|
|||||||
12 |
C |
ɉɊ |
|
|
dt |
|
||
|
|
|
|
|
|
|||
Ɇ12 |
ɋ12 ǻij12 |
ɋ12 ij1 ij2 ɋ12 ³Ȧ1dt ³Ȧ2dt . |
ɉɟɪɟɩɢɲɟɦ ɫɢɫɬɟɦɭ ɭɪɚɜɧɟɧɢɣ (2.52) ɜ ɨɩɟɪɚɬɨɪɧɨɣ ɮɨɪɦɟ:
ɆǻɆɋ į JȾȼ p M12,
M12 |
MC JɉɊ p, |
||
|
ɋ |
Ȧ1 Ȧ2 |
. |
Ɇ |
|
||
12 |
12 |
p |
|
|
|
(2.52)
(2.53)
ɉɨ ɫɢɫɬɟɦɟ ɭɪɚɜɧɟɧɢɣ (2.53) ɫɬɪɨɢɬɫɹ ɫɬɪɭɤɬɭɪɧɚɹ ɫɯɟɦɚ Ⱦɍɋ (ɪɢɫ. 2.16). Ɉɬɥɢɱɢɟ ɫɬɪɭɤɬɭɪɧɨɣ ɫɯɟɦɵ Ⱦɍɋ ɨɬ ɫɯɟɦɵ ɫɢɫɬɟɦɵ ɫ ɢɞɟɚɥɶɧɨ ɠɟɫɬɤɢɦɢ ɫɜɹɡɹɦɢ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɬɨɦ, ɱɬɨ ɝɥɚɜɧɵɟ ɦɚɫɫɵ ɪɚɡɞɟɥɟɧɵ, ɦɟɠɞɭ ɧɢɦɢ – ɢɧɬɟɝɪɢɪɭɸɳɟɟ ɡɜɟɧɨ ɋ12/ɪ, ɩɪɟɞɫɬɚɜɥɹɸɳɟɟ ɠɟɫɬɤɨɫɬɶ.
ɉɨɥɭɱɢɦ ɩɟɪɟɞɚɬɨɱɧɭɸ ɮɭɧɤɰɢɸ Ⱦɍɋ, ɞɥɹ ɱɟɝɨ ɩɪɟɨɛɪɚɡɭɟɦ ɫɬɪɭɤɬɭɪɧɭɸ ɫɯɟɦɭ ɪɢɫ. 2.16. ɇɚ ɪɢɫ. 2.17 ɩɪɢɜɟɞɟɧɚ ɩɪɟɨɛɪɚɡɨɜɚɧɧɚɹ ɫɬɪɭɤɬɭɪɧɚɹ ɫɯɟɦɚ, ɜ ɤɨɬɨɪɨɣ ɨɛɪɚɬɧɵɟ ɫɜɹɡɢ ɩɟɪɟɧɟɫɟɧɵ ɧɚ ɜɵɯɨɞ ɫɢɫɬɟɦɵ.
|
Ɇ12 |
|
|
|
|
|
|
|
|
|
|
Ɇɋ |
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
Ɇ |
|
|
1 |
|
Ȧ1 |
|
|
|
C |
|
|
|
|
1 |
|
Ȧ2 |
|||
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JȾȼ p |
|
|
|
|
p |
Ɇ12 |
|
|
|
|
JɊɈ p |
|
|||
|
|
|
Ȧ2 |
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
ǻɆɋ |
|
|
|
|
|
|
|
|
|
Ɋɢɫ. 2.16. ɋɬɪɭɤɬɭɪɧɚɹ ɫɯɟɦɚ Ⱦɍɋ
Ɇ |
|
1 |
|
Ȧ1 |
|
ɋ12 |
M12 |
|
1 |
|
|
Ȧ2 |
|||||
|
|
|
|
|
į JȾȼ ɪ |
|
|
|
ɪ |
|
|
|
JɉɊ ɪ |
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
M12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JɉɊ ɪ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
įJȾȼp
Ɋɢɫ. 2.17. ɉɪɟɨɛɪɚɡɨɜɚɧɧɚɹ ɫɬɪɭɤɬɭɪɧɚɹ ɫɯɟɦɚ ɩɪɢ ǻɆɋ = 0, Ɇɋ = 0
34

ɉɟɪɟɞɚɬɨɱɧɚɹ ɮɭɧɤɰɢɹ ɷɬɨɣ ɫɯɟɦɵ ɢɦɟɟɬ ɜɢɞ
|
ǻȦ2 p |
|
|
|
|
|
C12 |
|
|
|
|
|
||||
W p |
|
|
|
p2 į JȾȼ JɉɊ |
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'M p 1 |
|
|
|
C12 |
|
JɉɊ į JȾȼ ɪ |
||||||||||
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
p2 į JȾȼ JɉɊ |
|
(2.54) |
||||||||||
|
1 |
|
|
|
|
|
|
|
1 |
|
|
|
. |
|
||
|
|
|
|
|
|
|
|
|
|
|||||||
|
JɉɊ į JȾȼ ɪ |
1 |
|
į JȾȼ JɉɊ |
ɪ |
2 |
|
|||||||||
|
|
|
|
|
|
JɉɊ G JȾȼ C12 |
|
|
|
Ʉɚɤ ɜɢɞɧɨ ɢɡ (2.54), ɩɟɪɟɞɚɬɨɱɧɚɹ ɮɭɧɤɰɢɹ ɫɨɞɟɪɠɢɬ ɞɜɚ ɡɜɟɧɚ:
–ɢɧɬɟɝɪɢɪɭɸɳɟɟ ɡɜɟɧɨ ɫ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɭɫɢɥɟɧɢɹ 1/J = 1/(į·JȾȼ + JɉɊ) – ɷɬɨ ɡɜɟɧɨ ɩɪɟɞɫɬɚɜɥɹɟɬ ɢɞɟɚɥɶɧɨ ɠɟɫɬɤɭɸ ɫɢɫɬɟɦɭ;
–ɤɨɧɫɟɪɜɚɬɢɜɧɨɟ ɡɜɟɧɨ (ɤɨɥɟɛɚɬɟɥɶɧɨɟ ɡɜɟɧɨ ɛɟɡ ɞɟɦɩɮɢɪɨɜɚɧɢɹ ɤɨɥɟɛɚɧɢɣ) ɫ ɩɨɫɬɨɹɧɧɨɣ ɜɪɟɦɟɧɢ ɌɄ ɢ ɱɚɫɬɨɬɨɣ ɫɪɟɡɚ ȍɄ = ȍ12:
|
JɉɊ į JȾȼ |
|
:K |
JɉɊ į JȾȼ C12 |
|
ɌɄ |
JɉɊ į JȾȼ C12 |
; |
JɉɊ į JȾȼ |
. |
ɉɟɪɟɞɚɬɨɱɧɚɹ ɮɭɧɤɰɢɹ ɤɨɧɫɟɪɜɚɬɢɜɧɨɝɨ ɡɜɟɧɚ ɡɚɩɢɫɵɜɚɟɬɫɹ ɜ ɜɢɞɟ
W p |
1 |
ɌɄ2 ɪ2 1 . |
ɉɪɢ ɋ12 = f ɩɨɫɬɨɹɧɧɚɹ ɜɪɟɦɟɧɢ ɌɄ = 0, ɱɚɫɬɨɬɚ ɫɪɟɡɚ ȍ12 = f, ɩɟɪɟɞɚɬɨɱɧɚɹ ɮɭɧɤɰɢɹ ɭɩɪɭɝɨɣ ɫɢɫɬɟɦɵ ɩɪɟɜɪɚɳɚɟɬɫɹ ɜ ɩɟɪɟɞɚɬɨɱɧɭɸ ɮɭɧɤɰɢɸ ɡɜɟɧɚ ɫ ɢɞɟɚɥɶɧɨ ɠɟɫɬɤɢɦɢ ɫɜɹɡɹɦɢ.
ɉɪɢ p = j·ȍ ɩɨɥɭɱɢɦ W j : |
|
1 |
TK |
2 j : 2 1 . |
Ⱥɦɩɥɢɬɭɞɭ ɤɨɧɫɟɪɜɚɬɢɜɧɨɝɨ ɡɜɟɧɚ ɞɚɟɬ ɦɨɞɭɥɶ ɷɬɨɝɨ ɤɨɦɩɥɟɤɫɧɨɝɨ ɱɢɫɥɚ
|
1 |
1 |
A |
TK2 j ȍ 2 1 |
1 TK2 ȍ2 . |
ɤ
1/Ɍ
Ɋɢɫ. 2.18. ɑɚɫɬɨɬɧɚɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ Ⱦɍɋ
ɇɟɬɪɭɞɧɨ ɭɛɟɞɢɬɶɫɹ, ɱɬɨ ɚɦɩɥɢɬɭɞɚ ɤɨɧɫɟɪɜɚɬɢɜɧɨɝɨ ɡɜɟɧɚ ɛɭɞɟɬ ɪɚɜɧɚ ɛɟɫɤɨɧɟɱɧɨ-
ɫɬɢ Ⱥ =f ɩɪɢ ȍ =1/ɌɄ.
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɩɪɢ ɱɚɫɬɨɬɟ ɫɪɟɡɚ ɤɨɧɫɟɪɜɚɬɢɜɧɨɝɨ ɡɜɟɧɚ ȍ12 ɧɚɫɬɭɩɚɟɬ ɹɜɥɟɧɢɟ ɪɟɡɨɧɚɧɫɚ (ɷɬɭ ɱɚɫɬɨɬɭ ȍ12 = ȍɊȿɁ ɧɚɡɵɜɚɸɬ ɪɟɡɨɧɚɧɫɧɨɣ), ɅȺɑɏ ɷɬɨɝɨ ɡɜɟɧɚ ɬɟɪɩɢɬ ɪɚɡɪɵɜ. ɅȺɑɏ ɭɩɪɭɝɨɣ ɫɢɫɬɟɦɵ ɩɪɢɜɟɞɟɧɚ ɧɚ ɪɢɫ.
ȍ2.18. ȿɫɥɢ ɜɨɡɦɭɳɟɧɢɹ ɩɪɨɯɨɞɹɬ ɫ ɱɚɫɬɨɬɨɣ ȍ12, ɜ ɭɩɪɭɝɨɣ ɫɢɫɬɟɦɟ ɜɨɡɧɢɤɚɸɬ ɪɟɡɨɧɚɧɫɧɵɟ ɤɨɥɟɛɚɧɢɹ ɭɩɪɭɝɨɝɨ ɦɨɦɟɧɬɚ ɫ ɚɦɩɥɢɬɭɞɨɣ Ⱥ = f.
35

2.7.4. ɉɟɪɟɯɨɞɧɵɟ ɩɪɨɰɟɫɫɵ ɜ ɞɜɭɯɦɚɫɫɨɜɨɣ ɭɩɪɭɝɨɣ ɫɢɫɬɟɦɟ
Ɋɚɫɫɦɨɬɪɢɦ ɩɟɪɟɯɨɞɧɵɣ ɩɪɨɰɟɫɫ ɩɪɢɥɨɠɟɧɢɹ ɫɤɚɱɤɨɦ ɦɨɦɟɧɬɚ ɞɜɢɝɚɬɟɥɹ Ɇ (ɪɢɫ. 2.19) ɩɪɢ ǻɆɋ = 0 ɢ Ɇɋ = 0 ɩɨ ɫɬɪɭɤɬɭɪɧɨɣ ɫɯɟɦɟ Ⱦɍɋ (ɫɦ. ɪɢɫ. 2.16). ɉɨɫɥɟ ɩɪɢɥɨɠɟɧɢɹ ɫɤɚɱɤɚ Ɇ ɞɜɢɝɚɬɟɥɹ, ɟɫɥɢ ɋ12 = f, ɩɟɪɟɯɨɞɧɵɣ ɩɪɨɰɟɫɫ Ȧ2(t) ɩɨɣɞɟɬ ɩɨ ɥɢɧɟɣɧɨɦɭ ɡɚɤɨɧɭ ɫ ɭɫɤɨɪɟɧɢɟɦ İɋɊ.
ɉɪɢ ɋ12 < f, ɩɨɫɥɟ ɩɪɢɥɨɠɟɧɢɹ ɫɤɚɱɤɚ Ɇ ɞɜɢɝɚɬɟɥɹ ɭɩɪɭɝɢɣ ɦɨɦɟɧɬ Ɇ12 = 0, ɞɢɧɚɦɢɱɟɫɤɢɣ ɦɨɦɟɧɬ (M – M12)>0 ɢ ɩɨɫɥɟ ɩɟɪɜɨɝɨ ɢɧɬɟɝɪɚɥɶɧɨɝɨ ɡɜɟɧɚ ɧɚ ɭɱɚɫɬɤɟ t0…t1 ɫɤɨɪɨɫɬɶ Ȧ1 ɧɚɱɧɟɬ ɧɚɪɚɫɬɚɬɶ ɩɨ ɥɢɧɟɣɧɨɦɭ ɡɚɤɨɧɭ. ɉɨɫɥɟ ɜɬɨɪɨɝɨ ɢɧɬɟɝɪɚɥɶɧɨɝɨ ɡɜɟɧɚ ɧɚɱɧɟɬ ɧɚɪɚɫɬɚɬɶ Ɇ12. Ⱦɢɧɚɦɢɱɟɫɤɢɣ ɦɨɦɟɧɬ (M – M12) ɧɚɱɧɟɬ ɫɧɢɠɚɬɶɫɹ, ɬɟɦɩ ɧɚɪɚɫɬɚɧɢɹ Ȧ1 ɫɧɢɠɚɟɬɫɹ. ɋ ɪɨɫɬɨɦ Ɇ12 ɩɨɫɥɟ ɬɪɟɬɶɟɝɨ ɢɧɬɟɝɪɚɥɶɧɨɝɨ ɡɜɟɧɚ ɩɨɹɜɥɹɟɬɫɹ ɫɤɨɪɨɫɬɶ Ȧ2, ɧɚ ɜɯɨɞɟ ɜɬɨɪɨɝɨ ɢɧɬɟɝɪɚɥɶɧɨɝɨ ɡɜɟɧɚ ɩɨɹɜɥɹɟɬɫɹ ɪɚɡɧɨɫɬɶ (Ȧ1 – Ȧ2) > 0. Ɇ12 ɩɪɨɞɨɥɠɚɟɬ ɧɚɪɚɫɬɚɬɶ ɜ ɫɜɹɡɢ ɫ ɩɪɨɞɨɥɠɚɸɳɢɦɫɹ ɪɨɫɬɨɦ Ȧ1. ȼ ɦɨɦɟɧɬ ɜɪɟɦɟɧɢ t1 ɞɢɧɚɦɢɱɟɫɤɢɣ ɦɨɦɟɧɬ (M – M12) = 0, Ȧ1 ɩɪɟɤɪɚɳɚɟɬ ɧɚɪɚɫɬɚɧɢɟ, ɞɨɫɬɢɝɚɹ ɦɚɤɫɢɦɚɥɶɧɨɝɨ ɡɧɚɱɟɧɢɹ ɧɚ ɷɬɨɦ ɭɱɚɫɬɤɟ.
Ɋɚɫɫɦɚɬɪɢɜɚɹ ɩɨɞɨɛɧɵɦ ɫɩɨɫɨɛɨɦ ɩɨɫɥɟɞɭɸɳɢɟ ɭɱɚɫɬɤɢ, ɦɨɠɧɨ ɩɪɨɚɧɚɥɢ-
M
|
|
|
Ɇ12(t) |
|
|
|
Ɇ |
|
|
|
|
t0 |
t1 |
t2 |
t3 |
t4 |
t |
t5 |
|||||
Ȧ |
|
|
|
|
|
|
|
|
|
|
İɋɊ |
|
Ȧ1(t) |
|
|
|
|
|
|
|
Ȧ2(t) |
|
|
|
|
|
|
|
t |
t0 |
t1 |
t2 |
t3 |
t4 |
t5 |
Ɋɢɫ.2.19. ȼɪɟɦɟɧɧɵɟ ɞɢɚɝɪɚɦɦɵ ɦɨɦɟɧɬɚ Ɇ12, ɫɤɨɪɨɫɬɟɣ Ȧ1 ɢ Ȧ2 ɞɥɹ Ⱦɍɋ ɩɪɢ ɫɤɚɱɤɟ ɦɨɦɟɧɬɚ Ɇ
ɡɢɪɨɜɚɬɶ ɞɚɥɶɧɟɣɲɟɟ ɩɨɜɟɞɟɧɢɟ ɫɤɨɪɨɫɬɟɣ Ȧ1, Ȧ2 ɢ ɭɩɪɭɝɨɝɨ ɦɨɦɟɧɬɚ Ɇ12 ɩɪɢ ɫɤɚɱɤɟ ɦɨɦɟɧɬɚ Ɇ. ȼ ɩɨɦɨɳɶ ɢɡɭɱɟɧɢɸ ɞɚɥɶɧɟɣɲɟɝɨ ɩɟɪɟɯɨɞɧɨɝɨ ɩɪɨɰɟɫɫɚ ɩɪɟɞɥɚɝɚɟɬɫɹ ɬɚɛɥ. 2.2.
ɉɪɢɜɟɞɟɧɧɵɣ ɩɟɪɟɯɨɞɧɵɣ ɩɪɨɰɟɫɫ ɜ ɞɜɭɯɦɚɫɫɨɜɨɣ ɭɩɪɭɝɨɣ ɫɢɫɬɟɦɟ ɩɨɞɬɜɟɪɠɞɚɟɬ, ɱɬɨ ɨɧ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɧɟɡɚɬɭɯɚɸɳɢɦɢ ɤɨɥɟɛɚɧɢɹɦɢ ɫ ɱɚɫɬɨɬɨɣ
ȍɊȿɁ.
ɉɪɢ ɧɭɥɟɜɵɯ ɧɚɱɚɥɶɧɵɯ ɭɫɥɨɜɢɹɯ ɭɩɪɭɝɢɣ ɦɨɦɟɧɬ ɢɡɦɟɧɹɟɬɫɹ ɩɨ ɡɚɤɨɧɭ
Ɇ12 t JɉɊ İ 1 cos:t MC , |
(2.55) |
36
ɬɨɝɞɚ ɫɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ ɭɩɪɭɝɨɝɨ ɦɨɦɟɧɬɚ ɨɩɪɟɞɟɥɢɬɫɹ ɩɨ ɮɨɪɦɭɥɟ
|
M12CP |
JɉɊ İɋɊ Ɇɋ , |
|
(2.56) |
|||
ɝɞɟ |
|
|
|
|
|
|
|
|
|
dȦ |
|
M MC |
|
. |
(2.57) |
İ |
ɋɊ |
dt |
|
į JȾȼ JɉɊ |
|||
|
|
|
|
|
|
|
|
|
|
|
|
Ɍɚɛɥɢɰɚ 2.2 |
|
|
ɉɨɜɟɞɟɧɢɟ ɭɩɪɭɝɨɝɨ ɦɨɦɟɧɬɚ Ɇ12 ɢ ɫɤɨɪɨɫɬɟɣ Ȧ1 ɢ Ȧ2 |
|
||||
|
|
ɩɪɢ ɫɤɚɱɤɟ ɦɨɦɟɧɬɚ Ɇ ɩɨ ɭɱɚɫɬɤɚɦ |
|
|
|||
|
|
|
|
|
|
|
|
|
|
Ɋɚɡɧɨɫɬɶ |
Ȧ1 |
Ɋɚɡɧɨɫɬɶ Ȧ1 – |
|
M12 |
Ȧ2 |
|
|
M – M12 |
|
Ȧ2 |
|
|
|
|
t0 |
0 |
0 |
0 |
|
0 |
0 |
|
|
|
|
|
|
|
|
t0 – t1 |
ɛɨɥɶɲɟ ɧɭɥɹ |
Ĺ |
ɛɨɥɶɲɟ ɧɭɥɹ |
|
Ĺ |
Ĺ |
|
|
|
|
|
|
|
|
|
|
t1 |
0 |
max1 |
ɛɨɥɶɲɟ ɧɭɥɹ |
|
ĹĹ |
Ĺ |
|
|
|
|
|
|
|
|
t1 |
– t2 |
ɦɟɧɶɲɟ ɧɭɥɹ |
Ļ |
ɛɨɥɶɲɟ ɧɭɥɹ |
|
Ĺ |
Ĺ |
|
|
|
|
|
|
|
|
|
t2 |
ɦɟɧɶɲɟ ɧɭɥɹ |
ĻĻ |
0 |
|
max1 |
ĹĹ |
|
|
|
|
|
|
|
|
t2 |
– t3 |
ɦɟɧɶɲɟ ɧɭɥɹ |
Ļ |
ɦɟɧɶɲɟ ɧɭɥɹ |
|
Ļ |
Ĺ |
|
|
|
|
|
|
|
|
|
t3 |
0 |
min1 |
ɦɟɧɶɲɟ ɧɭɥɹ |
|
ĻĻ |
Ĺ |
|
|
|
|
|
|
|
|
t3 |
– t4 |
ɛɨɥɶɲɟ ɧɭɥɹ |
Ĺ |
ɦɟɧɶɲɟ ɧɭɥɹ |
|
Ļ |
Ĺ |
|
t4 |
ɛɨɥɶɲɟ ɧɭɥɹ |
ĹĹ |
0 |
|
min1 |
max1 |
|
|
|
|
|
|
|
|
t4 |
– t5 |
ɛɨɥɶɲɟ ɧɭɥɹ |
Ĺ |
ɛɨɥɶɲɟ ɧɭɥɹ |
|
Ĺ |
Ĺ |
|
|
|
|
|
|
|
|
|
t5 |
0 |
max2 |
ɛɨɥɶɲɟ ɧɭɥɹ |
|
ĹĹ |
Ĺ |
|
|
|
|
|
|
|
|
Ɇɚɤɫɢɦɚɥɶɧɨɟ ɡɧɚɱɟɧɢɟ ɭɩɪɭɝɨɝɨ ɦɨɦɟɧɬɚ Ɇ12ɆȺɄɋ ɜ ɩɟɪɟɞɚɱɟ ɩɪɟɜɵɲɚɟɬ ɦɨɦɟɧɬ ɞɜɢɝɚɬɟɥɹ Ɇ ɢ ɦɨɠɟɬ ɜɵɡɜɚɬɶ ɨɫɬɚɬɨɱɧɵɟ ɞɟɮɨɪɦɚɰɢɢ, ɟɫɥɢ ɩɪɢ ɩɪɨɟɤɬɢɪɨɜɚɧɢɢ ɧɟ ɩɪɟɞɭɫɦɨɬɪɟɬɶ ɦɟɪɵ ɩɨ ɟɝɨ ɫɧɢɠɟɧɢɸ.
Ɉɰɟɧɢɜɚɸɬ ɜɥɢɹɧɢɟ ɭɩɪɭɝɨɝɨ ɦɨɦɟɧɬɚ ɫ ɩɨɦɨɳɶɸ ɤɨɷɮɮɢɰɢɟɧɬɚ ɞɢɧɚɦɢɱɧɨɫɬɢ ɄȾɂɇ, ɩɨɞ ɤɨɬɨɪɵɦ ɩɨɧɢɦɚɸɬ ɨɬɧɨɲɟɧɢɟ ɦɚɤɫɢɦɚɥɶɧɨɝɨ ɡɧɚɱɟɧɢɹ ɭɩɪɭɝɨɝɨ ɦɨɦɟɧɬɚ ɤ ɟɝɨ ɫɪɟɞɧɟɦɭ ɡɧɚɱɟɧɢɸ
|
Ɇ12ɆȺɄɋ |
|
2 JɉɊ İɋɊ Ɇɋ |
. |
(2.58) |
|||
ɄȾɂɇ |
|
|
||||||
|
Ɇ |
|
J |
İ |
|
Ɇ |
|
|
|
12ɋɊ |
|
ɉɊ |
|
ɋɊ |
ɋ |
|
ȼ ɪɟɚɥɶɧɵɯ ɷɥɟɦɟɧɬɚɯ ɤɢɧɟɦɚɬɢɱɟɫɤɢɯ ɫɯɟɦ ɜɫɟɝɞɚ ɫɭɳɟɫɬɜɭɸɬ ɫɢɥɵ ɜɧɭɬɪɟɧɧɟɝɨ ɜɹɡɤɨɝɨ ɬɪɟɧɢɹ, ɨɤɚɡɵɜɚɸɳɢɟ ɫɭɳɟɫɬɜɟɧɧɨɟ ɜɥɢɹɧɢɟ ɧɚ ɞɢɧɚɦɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɜ ɦɟɯɚɧɢɱɟɫɤɢɯ ɫɢɫɬɟɦɚɯ, ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɵɟ ɫɤɨɪɨɫɬɢ ɞɟɮɨɪɦɚɰɢɢ ɜɚɥɨɜ, ɤɚɧɚɬɨɜ, ɦɭɮɬ ɢ ɞɪɭɝɢɯ ɷɥɟɦɟɧɬɨɜ.
Ɇɨɦɟɧɬ ɜɧɭɬɪɟɧɧɟɝɨ ɜɹɡɤɨɝɨ ɬɪɟɧɢɹ ɨɰɟɧɢɜɚɸɬ ɩɨ ɮɨɪɦɭɥɟ
37

ɆȼɌ E12 Ȧ1 Ȧ2 ,
ɝɞɟ Ȧ1, Ȧ2 – ɫɤɨɪɨɫɬɢ ɧɚ ɜɯɨɞɟ ɢ ɜɵɯɨɞɟ ɞɟɮɨɪɦɢɪɭɟɦɨɝɨ ɷɥɟɦɟɧɬɚ; ȕ12 – ɤɨɷɮɮɢɰɢɟɧɬ ɜɹɡɤɨɝɨ ɬɪɟɧɢɹ.
ɉɪɢ ɜɨɡɞɟɣɫɬɜɢɢ ɭɩɪɭɝɢɯ ɤɨɥɟɛɚɧɢɣ ɜ ɞɟɮɨɪɦɢɪɭɟɦɨɦ ɷɥɟɦɟɧɬɟ ɩɪɨɢɫɯɨɞɢɬ ɩɨɝɥɨɳɟɧɢɟ ɷɧɟɪɝɢɢ ɤɨɥɟɛɚɧɢɣ, ɬɚɤ ɤɚɤ ɩɪɢ ɢɡɦɟɧɟɧɢɢ ɫɤɨɪɨɫɬɢ ɢɡɦɟɧɹɟɬɫɹ ɢ ɡɧɚɤ ɦɨɦɟɧɬɚ, ɦɨɳɧɨɫɬɶ ɩɨɬɟɪɶ ɜ ɷɥɟɦɟɧɬɟ ɨɫɬɚɟɬɫɹ ɩɨɥɨɠɢɬɟɥɶɧɨɣ.
Ⱦɥɹ ɭɱɟɬɚ ɦɨɦɟɧɬɚ ɜɹɡɤɨɝɨ ɬɪɟɧɢɹ ɜ ɪɚɫɱɟɬɧɭɸ ɢ ɫɬɪɭɤɬɭɪɧɭɸ ɫɯɟɦɵ Ⱦɍɋ ɜɧɨɫɹɬ ȕ12 (ɪɢɫ. 2.20).
ȕ12
ȕ12
į·Jɞɜ |
JɉɊ |
Ȧ1 |
ɋ |
M12 |
|
C12 |
|
12 |
|
|
- |
|
|
|
|
|
ɪ |
|
|
|
|
Ȧ2 |
|
|
|
Ɋɢɫ. 2.20. Ⱦɍɋ ɫ ɭɱɟɬɨɦ ɷɥɟɦɟɧɬɚ ɜɹɡɤɨɝɨ ɬɪɟɧɢɹ |
|
ɍɱɟɬ ɜɧɭɬɪɟɧɧɟɝɨ ɜɹɡɤɨɝɨ ɬɪɟɧɢɹ ɩɨɡɜɨɥɹɟɬ ɩɪɢ ɧɚɢɛɨɥɶɲɢɯ ȕ12 ɫɧɢɡɢɬɶ ɦɚɤɫɢɦɭɦ ɞɢɧɚɦɢɱɟɫɤɨɣ ɧɚɝɪɭɡɤɢ ɡɚ ɫɱɟɬ ɟɫɬɟɫɬɜɟɧɧɨɝɨ ɡɚɬɭɯɚɧɢɹ ɩɪɢɦɟɪɧɨ ɧɚ 15%, ɱɬɨ ɫɨɢɡɦɟɪɢɦɨ ɫ ɬɨɱɧɨɫɬɶɸ ɨɩɪɟɞɟɥɟɧɢɹ ɩɚɪɚɦɟɬɪɨɜ ɫɢɫɬɟɦɵ. ɉɨɷɬɨɦɭ ɩɪɢ ɚɧɚɥɢɡɟ ɦɚɤɫɢɦɚɥɶɧɵɯ ɞɢɧɚɦɢɱɟɫɤɢɯ ɧɚɝɪɭɡɨɤ ɜ ɩɟɪɟɯɨɞɧɵɯ ɩɪɨɰɟɫɫɚɯ ɩɭɫɤɚ ɢ ɬɨɪɦɨɠɟɧɢɹ ɷɥɟɤɬɪɨɩɪɢɜɨɞɚ ɟɫɬɟɫɬɜɟɧɧɵɦ ɞɟɦɩɮɢɪɨɜɚɧɢɟɦ ɦɨɠɧɨ ɩɪɟɧɟɛɪɟɝɚɬɶ.
2.7.5.ɉɟɪɟɯɨɞɧɵɟ ɩɪɨɰɟɫɫɵ ɜ ɞɜɭɯɦɚɫɫɨɜɨɣ ɭɩɪɭɝɨɣ ɫɢɫɬɟɦɟ
ɫɡɚɡɨɪɨɦ
ȼɞɟɣɫɬɜɭɸɳɟɦ ɦɟɯɚɧɢɱɟɫɤɨɦ ɨɛɨɪɭɞɨɜɚɧɢɢ ɜɦɟɫɬɟ ɫ ɭɩɪɭɝɨɫɬɶɸ ɞɨɜɨɥɶɧɨ ɱɚɫɬɨ ɜɫɬɪɟɱɚɸɬɫɹ ɡɚɡɨɪɵ ɜ ɦɟɯɚɧɢɱɟɫɤɢɯ ɩɟɪɟɞɚɱɚɯ ɢ ɫɨɱɥɟɧɟɧɢɹɯ. ȼ ɪɚɫɱɟɬ-
ɧɨɣ ɫɯɟɦɟ (ɪɢɫ. 2.21) ɡɚɡɨɪ ɪɚɡɪɵɜɚɟɬ ɦɟɯɚɧɢɱɟɫɤɭɸ ɰɟɩɶ. Ɂɚɜɢɫɢɦɨɫɬɶ Ɇ12 = f(ij1–ij2) ɫɬɚɧɨɜɢɬɫɹ ɧɟɥɢɧɟɣɧɨɣ. Ʉɨɝɞɚ ɜ ɩɪɨɰɟɫɫɟ ɜɨɡɞɟɣɫɬɜɢɹ ɭɩɪɭɝɨɝɨ ɦɨɦɟɧɬɚ ɞɟɮɨɪɦɚɰɢɹ ɷɥɟɦɟɧɬɚ ǻij ɫɬɚɧɨɜɢɬɫɹ ɦɟɧɶɲɟ ɡɚɡɨɪɚ ǻijɡ ɜ ɦɟɯɚɧɢɱɟɫɤɨɣ ɩɟɪɟɞɚɱɟ, ɭɩɪɭɝɢɣ ɦɨɦɟɧɬ Ɇ12 ɫɬɚɧɨɜɢɬɫɹ ɪɚɜɧɵɦ ɧɭɥɸ, ɤɢɧɟɦɚɬɢɱɟɫɤɚɹ ɰɟɩɶ ɪɚɡɪɵɜɚɟɬɫɹ. ɋɢɫɬɟɦɚ ɩɪɨɞɨɥɠɚɟɬ ɞɜɢɠɟɧɢɟ, ɧɚɪɚɫɬɚɟɬ ɪɚɡɧɨɫɬɶ ɫɤɨɪɨɫɬɟɣ ɢ ɩɨɫɥɟ ɩɪɨɯɨɠɞɟɧɢɹ ɡɚɡɨɪɚ ɦɟɯɚɧɢɱɟɫɤɚɹ ɰɟɩɶ ɡɚɦɵɤɚɟɬɫɹ. ɇɚɪɚɫɬɚɸɳɢɣ ɭɩɪɭɝɢɣ ɦɨɦɟɧɬ ɫɨɡɞɚɟɬ ɭɞɚɪ ɜ ɦɟɯɚɧɢɱɟɫɤɨɣ ɰɟɩɢ.
|
|
|
|
|
|
|
|
|
Ɇ12 |
|
|
|
|
|
ǻijɡ |
|
|
||||||
į·JȾȼ |
|
|
|
|
|
|
|
JɉɊ |
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
C12 |
|
|
|
|
|
||||
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
||
|
Ȧ1 |
|
|
|
|
|
|
Ȧ2 |
ǻijɡ/2 |
ǻijɡ/2 |
ǻij |
|
|
|
|
|
|
|
|
|
|||
ǻMC |
|
|
|
|
MC |
|
|||||
|
|
|
|
|
|
|
|||||
|
Ɇ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ɋɢɫ. 2.21. Ɋɚɫɱɟɬɧɚɹ ɫɯɟɦɚ Ⱦɍɋ ɫ ɡɚɡɨɪɨɦ ɢ ɡɚɜɢɫɢɦɨɫɬɶ Ɇ12 =f(ǻij)
38

ɋɬɪɭɤɬɭɪɧɚɹ ɫɯɟɦɚ Ⱦɍɋ ɫ ɡɚɡɨɪɨɦ ɢ ɩɟɪɟɯɨɞɧɵɣ ɩɪɨɰɟɫɫ ɩɪɢɥɨɠɟɧɢɹ ɦɨɦɟɧɬɚ Ɇ ɞɜɢɝɚɬɟɥɹ ɫɤɚɱɤɨɦ ɩɪɢɜɟɞɟɧɵ ɧɚ ɪɢɫ. 2.22, 2.23. ɉɪɟɞɥɚɝɚɟɬɫɹ ɫɚɦɨ-
ɫɬɨɹɬɟɥɶɧɨ ɩɪɨɚɧɚɥɢɡɢɪɨɜɚɬɶ ɜɪɟɦɟɧɧɵɟ ɞɢɚɝɪɚɦɦɵ ɤɨɨɪɞɢɧɚɬ ɭɩɪɭɝɨɣ ɫɢɫɬɟɦɵ ɫ ɡɚɡɨɪɨɦ.
|
1 |
Ȧ1 |
|
Ɇ12 |
Ɇɋ |
|
Ɇ |
1 |
ǻij |
1 |
Ȧ2 |
||
|
GJȾȼ p |
|
p |
C12 |
JɉɊ p |
|
ǻɆɋ |
|
|
Ȧ2 |
|
|
|
Ɋɢɫ. 2.22. ɋɬɪɭɤɬɭɪɧɚɹ ɫɯɟɦɚ Ⱦɍɋ ɫ ɡɚɡɨɪɨɦ
M |
|
Ɇ12(t) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ɇ(t) |
|
t0 t1 |
t2 |
t3 |
t4 |
|
t |
|
t5 |
Ȧ
Ȧ1(t)
Ȧ2(t)
t
t0 |
t1 |
t2 |
t3 |
t4 |
t5 |
Ɋɢɫ. 2.23. ȼɪɟɦɟɧɧɵɟ ɞɢɚɝɪɚɦɦɵ ɦɨɦɟɧɬɚ Ɇ12, ɫɤɨɪɨɫɬɟɣ Ȧ1 ɢ Ȧ2 ɞɥɹ Ⱦɍɋ ɫ ɡɚɡɨɪɨɦ
Ⱦɢɧɚɦɢɱɟɫɤɢɟ ɤɨɥɟɛɚɬɟɥɶɧɵɟ ɩɪɨɰɟɫɫɵ ɜ ɫɪɟɞɧɟɦ ɧɟ ɜɥɢɹɸɬ ɧɚ ɞɥɢɬɟɥɶɧɨɫɬɶ ɩɟɪɟɯɨɞɧɵɯ ɩɪɨɰɟɫɫɨɜ, ɧɨ ɨɬɪɢɰɚɬɟɥɶɧɨ ɫɤɚɡɵɜɚɸɬɫɹ ɧɚ ɭɫɥɨɜɢɹ ɜɵɩɨɥɧɟɧɢɹ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɨɩɟɪɚɰɢɣ, ɜ ɱɚɫɬɧɨɫɬɢ, ɜ ɬɨɱɧɨɫɬɢ ɪɚɛɨɬɵ ɭɫɬɚɧɨɜɤɢ.
ɉɪɚɤɬɢɱɟɫɤɢ ɜɫɟɝɞɚ ɜɨɡɧɢɤɧɨɜɟɧɢɟ ɭɩɪɭɝɢɯ ɤɨɥɟɛɚɧɢɣ ɭɜɟɥɢɱɢɜɚɸɬ ɞɢɧɚɦɢɱɟɫɤɢɟ ɧɚɝɪɭɡɤɢ ɦɟɯɚɧɢɱɟɫɤɨɝɨ ɨɛɨɪɭɞɨɜɚɧɢɹ ɢ ɟɝɨ ɢɡɧɨɫ.
ɇɚɲɚ ɡɚɞɚɱɚ: ɬɚɤ ɩɪɨɟɤɬɢɪɨɜɚɬɶ ɷɥɟɤɬɪɨɩɪɢɜɨɞ, ɱɬɨɛɵ ɫɧɢɠɚɬɶ ɜɵɛɪɨɫɵ ɭɩɪɭɝɢɯ ɦɨɦɟɧɬɨɜ (ɭɦɟɧɶɲɚɬɶ ɞɢɧɚɦɢɱɟɫɤɢɣ ɤɨɷɮɮɢɰɢɟɧɬ), ɧɭɠɧɨ ɨɩɪɟɞɟɥɟɧɧɵɦ ɨɛɪɚɡɨɦ ɜɵɛɢɪɚɬɶ ɫɬɪɭɤɬɭɪɭ ɷɥɟɤɬɪɨɩɪɢɜɨɞɚ, ɟɝɨ ɩɚɪɚɦɟɬɪɵ (ɨɝɪɚɧɢɱɢɜɚɬɶ ɭɫɤɨɪɟɧɢɟ, ɩɪɢɦɟɧɹɬɶ ɫɢɫɬɟɦɭ ɜɵɛɨɪɤɢ ɡɚɡɨɪɨɜ ɢ ɬ.ɩ.).
2.8. Ɉɛɨɛɳɟɧɧɚɹ ɫɬɪɭɤɬɭɪɧɚɹ ɫɯɟɦɚ ɦɟɯɚɧɢɱɟɫɤɨɣ ɱɚɫɬɢ ɷɥɟɤɬɪɨɩɪɢɜɨɞɚ
ȼ ɰɟɥɨɦ ɦɟɯɚɧɢɱɟɫɤɚɹ ɱɚɫɬɶ ɷɥɟɤɬɪɨɩɪɢɜɨɞɚ – ɫɥɨɠɧɟɣɲɢɣ ɨɛɴɟɤɬ ɭɩɪɚɜɥɟɧɢɹ (ɪɢɫ. 2.24) ɫ ɫɭɳɟɫɬɜɟɧɧɵɦɢ ɧɟɥɢɧɟɣɧɨɫɬɹɦɢ (ɡɚɡɨɪ ǻijɁ, ɫɭɯɨɟ
39

ɆɋɌ ɢ ɜɹɡɤɨɟ ɬɪɟɧɢɟ ɆȼɌ), ɨɝɪɚɧɢɱɟɧɧɵɣ ɜɟɥɢɱɢɧɚɦɢ ɠɟɫɬɤɨɫɬɢ ɜɚɥɨɜ ɢ ɬ.ɩ. ɇɟɨɛɯɨɞɢɦɨɫɬɶ ɭɱɟɬɚ ɬɟɯ ɢɥɢ ɢɧɵɯ ɩɚɪɚɦɟɬɪɨɜ (ɡɚɡɨɪɵ, ɭɩɪɭɝɨɫɬɢ ɢ ɬ.ɩ.) ɪɟɲɚɸɬɫɹ ɜ ɤɚɠɞɨɦ ɤɨɧɤɪɟɬɧɨɦ ɦɟɯɚɧɢɡɦɟ ɢɧɞɢɜɢɞɭɚɥɶɧɨ. Ɉɛɵɱɧɨ ɫɧɚɱɚɥɚ ɪɟɲɚɸɬɫɹ ɡɚɞɚɱɢ ɫ ɢɞɟɚɥɶɧɨ ɠɟɫɬɤɢɦɢ ɫɜɹɡɹɦɢ, ɢ ɥɢɲɶ ɡɚɬɟɦ ɤɨɪɪɟɤɬɢɪɭɸɬɫɹ ɫ ɭɱɟɬɨɦ ɭɩɪɭɝɨɫɬɢ ɢ ɡɚɡɨɪɨɜ.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ɇ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɆɋɌ |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɋɌ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
ǻɆɋ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ǻij |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ɂ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
Ɇ1 |
|
|
|
|
1 |
|
|
|
|
Ȧ2 |
|||||||
|
|
|
|
|
|
|
|
Ȧ1 |
|
|
|
|
ȕ12p+ɋ1 |
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JɉɊp |
|
|
|||||||||||||||||
Ɇ |
|
|
|
|
|
|
|
|
|
|
|
|
ɪ |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
G JȾȼ ɪ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ȧ2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɆȼɌ
1+b·sign(M12)
Ɋɢɫ. 2.24. Ɉɛɨɛɳɟɧɧɚɹ ɫɬɪɭɤɬɭɪɧɚɹ ɫɯɟɦɚ ɦɟɯɚɧɢɱɟɫɤɨɣ ɱɚɫɬɢ ɷɥɟɤɬɪɨɩɪɢɜɨɞɚ
ɉɪɢɜɟɞɟɧɢɟ ɜ ɞɜɢɠɟɧɢɟ ɢɫɩɨɥɧɢɬɟɥɶɧɵɯ ɦɟɯɚɧɢɡɦɨɜ ɢ ɭɩɪɚɜɥɟɧɢɟ ɢɯ ɞɜɢɠɟɧɢɟɦ ɞɥɹ ɜɵɩɨɥɧɟɧɢɹ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɨɩɟɪɚɰɢɣ ɹɜɥɹɟɬɫɹ ɨɫɧɨɜɧɨɣ ɡɚɞɚɱɟɣ Ⱥɗɉ. ɉɨɷɬɨɦɭ ɫɩɟɰɢɚɥɢɫɬ ɩɨ ɚɜɬɨɦɚɬɢɡɢɪɨɜɚɧɧɨɦɭ ɷɥɟɤɬɪɨɩɪɢɜɨɞɭ ɞɨɥɠɟɧ ɡɧɚɬɶ ɨɛɳɢɟ ɨɫɨɛɟɧɧɨɫɬɢ ɷɥɟɤɬɪɨɦɟɯɚɧɢɱɟɫɤɢɯ ɫɢɫɬɟɦ, ɜɚɠɧɟɣɲɢɟ ɢɯ ɷɥɟɦɟɧɬɵ, ɫɜɹɡɢ ɢ ɩɚɪɚɦɟɬɪɵ, ɚ ɬɚɤɠɟ ɦɚɬɟɦɚɬɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɢɯ ɨɩɢɫɚɧɢɹ ɢ ɚɧɚɥɢɡɚ. Ɉɧ ɞɨɥɠɟɧ ɭɦɟɬɶ ɧɚ ɨɫɧɨɜɟ ɢɡɜɟɫɬɧɨɣ ɤɢɧɟɦɚɬɢɱɟɫɤɨɣ ɫɯɟɦɵ ɦɟɯɚɧɢɡɦɚ, ɟɝɨ ɬɟɯɧɢɱɟɫɤɢɯ ɞɚɧɧɵɯ ɢ ɫɜɟɞɟɧɢɣ ɨ ɬɟɯɧɨɥɨɝɢɱɟɫɤɨɦ ɩɪɨɰɟɫɫɟ ɫɨɫɬɚɜɥɹɬɶ ɪɚɫɱɟɬɧɵɟ ɫɯɟɦɵ ɢ ɪɚɫɫɱɢɬɵɜɚɬɶ ɩɚɪɚɦɟɬɪɵ ɦɟɯɚɧɢɱɟɫɤɨɣ ɱɚɫɬɢ ɷɥɟɤɬɪɨɩɪɢɜɨɞɚ, ɨɩɢɫɵɜɚɬɶ ɞɜɢɠɟɧɢɟ ɷɥɟɤɬɪɨɩɪɢɜɨɞɚ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɵɦɢ ɭɪɚɜɧɟɧɢɹɦɢ, ɪɚɫɫɱɢɬɵɜɚɬɶ ɱɚɫɬɨɬɧɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɢ ɦɟɯɚɧɢɱɟɫɤɢɟ ɩɟɪɟɯɨɞɧɵɟ ɩɪɨɰɟɫɫɵ. Ⱦɨɥɠɟɧ ɩɨ ɢɡɜɟɫɬɧɨɦɭ ɯɚɪɚɤɬɟɪɭ ɢɡɦɟɧɟɧɢɹ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɝɨ ɦɨɦɟɧɬɚ ɞɜɢɝɚɬɟɥɹ ɨɰɟɧɢɜɚɬɶ ɯɚɪɚɤɬɟɪ ɞɜɢɠɟɧɢɹ ɷɥɟɤɬɪɨɩɪɢɜɨɞɚ.
2.9.ɍɩɪɚɠɧɟɧɢɹ ɞɥɹ ɫɚɦɨɩɪɨɜɟɪɤɢ
2.9.1.Ɉɩɪɟɞɟɥɢɬɟ ɩɪɢɜɟɞɟɧɧɵɟ ɤ ɜɚɥɭ ɞɜɢɝɚɬɟɥɹ ɫɬɚɬɢɱɟɫɤɢɣ ɦɨɦɟɧɬ Ɇɋ ɢ ɦɨɦɟɧɬ ɢɧɟɪɰɢɢ JɉɊ ɝɪɭɡɚ, ɟɫɥɢ ɝɪɭɡ ɦɚɫɫɨɣ m=10 ɬ ɩɨɞɧɢɦɚɟɬɫɹ ɫɨ ɫɤɨɪɨɫɬɶɸ v=1 ɦ/ɫ, ɚ ɫɤɨɪɨɫɬɶ ɞɜɢɝɚɬɟɥɹ ɩɪɢ ɩɨɞɴɟɦɟ Ȧ =100 ɪɚɞ/ɫ.
2.9.2.ȼɨ ɫɤɨɥɶɤɨ ɪɚɡ ɢɡɦɟɧɢɬɫɹ ɩɪɢɜɟɞɟɧɧɵɟ ɤ ɜɚɥɭ ɞɜɢɝɚɬɟɥɹ ɫɬɚɬɢɱɟɫɤɢɣ
ɦɨɦɟɧɬ Ɇɋ ɢ ɦɨɦɟɧɬ ɢɧɟɪɰɢɢ JɉɊ ɝɪɭɡɚ, ɟɫɥɢ:
– ɫɤɨɪɨɫɬɶ ɜɪɚɳɟɧɢɹ ɞɜɢɝɚɬɟɥɹ ɫɧɢɡɢɬɶ ɜɞɜɨɟ?
– ɫɤɨɪɨɫɬɶ ɩɨɞɴɟɦɚ ɫɧɢɡɢɬɶ ɜɞɜɨɟ ɩɪɢ ɬɨɣ ɠɟ ɫɤɨɪɨɫɬɢ ɞɜɢɝɚɬɟɥɹ Ȧ = 100 ɪɚɞ/ɫ?
40