Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

EP / Теория ЭП Драчев

.pdf
Скачиваний:
73
Добавлен:
02.02.2015
Размер:
1.46 Mб
Скачать

ɉɪɢɦɟɪ 3.13. Ɋɚɫɫɱɢɬɚɬɶ ɜɟɥɢɱɢɧɭ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɜ ɰɟɩɢ ɫɬɚɬɨɪɚ Iɉ ɢ ɜɟɥɢɱɢɧɭ ɞɨɛɚɜɨɱɧɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɜ ɰɟɩɢ ɪɨɬɨɪɚ R2ȾɈȻ ɚɫɢɧɯɪɨɧɧɨɝɨ ɞɜɢɝɚɬɟɥɹ 4AK200M8ɍ3 (ɫɦ. ɩɪɢɦɟɪ 3.7), ɨɛɟɫɩɟɱɢɜɚɸɳɟɝɨ ɪɚɛɨɬɭ ɞɜɢɝɚɬɟɥɹ ɜ ɡɚɞɚɧɧɨɣ

ɬɨɱɤɟ: MɁȺȾ = – 0,8, ȦɁȺȾ = 0,4 ɜ ɪɟɠɢɦɟ ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɬɨɪɦɨɠɟɧɢɹ. Ɋɚɫɫɱɢɬɚɬɶ ɢ ɩɨɫɬɪɨɢɬɶ ɦɟɯɚɧɢɱɟɫɤɢɟ ɢ ɷɥɟɤɬɪɨɦɟɯɚɧɢɱɟɫɤɢɟ ɯɚɪɚɤɬɟɪɢɫɬɢ-

ɤɢ, ɩɪɨɯɨɞɹɳɢɟ ɱɟɪɟɡ ɡɚɞɚɧɧɭɸ ɬɨɱɤɭ.

Ɋɟɠɢɦ ɪɚɛɨɬɵ ɞɜɢɝɚɬɟɥɹ – ɞɢɧɚɦɢɱɟɫɤɨɟ ɬɨɪɦɨɠɟɧɢɟ ɫ ɧɟɡɚɜɢɫɢɦɵɦ ɜɨɡɛɭɠɞɟɧɢɟɦ, ɩɢɬɚɧɢɟ ɰɟɩɢ ɫɬɚɬɨɪɚ – ɨɬ ɢɫɬɨɱɧɢɤɚ ɬɨɤɚ. Ɉɛɦɨɬɤɢ ɫɬɚɬɨɪɚ ɫɨɟɞɢɧɟɧɵ ɜ ɡɜɟɡɞɭ, ɩɨɫɬɨɹɧɧɵɣ ɬɨɤ ɩɨɞɤɥɸɱɟɧ ɤ ɞɜɭɦ ɮɚɡɚɦ.

Ⱦɥɹ ɨɛɟɫɩɟɱɟɧɢɹ ɭɫɬɨɣɱɢɜɨɣ ɪɚɛɨɬɵ ɜ ɡɚɞɚɧɧɨɣ ɬɨɱɤɟ ɭɫɬɚɧɨɜɢɦ ɡɚɩɚɫ ɩɨ ɩɟɪɟɝɪɭɡɨɱɧɨɣ ɫɩɨɫɨɛɧɨɫɬɢ ɆɄ = 2·ɆɁȺȾ. Ɍɨɝɞɚ ɜɟɥɢɱɢɧɚ ɷɤɜɢɜɚɥɟɧɬɧɨɝɨ ɩɟɪɟɦɟɧɧɨɝɨ ɬɨɤɚ (ɩɪɢ ɯP= const) ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɟ

I

2 ɆɄȺɌ Ȧ

μ ɯc2 )

2 2 0,8 198 78,5 (12,8 0,7)

36,96Ⱥ,

 

 

 

 

1ɁȺȾ

 

3 12,82

 

 

3 ɯμ2

 

 

ɚ ɜɟɥɢɱɢɧɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɩɪɢ ɫɯɟɦɟ ɫɨɟɞɢɧɟɧɢɹ – ɡɜɟɡɞɚ

Iɉ= I1ɁȺȾ / 0,816 = 36,96 / 0,816 = 45,3 Ⱥ.

ȼɵɪɚɠɟɧɢɟ ɦɟɯɚɧɢɱɟɫɤɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɞɜɢɝɚɬɟɥɹ ɩɪɢ ɩɢɬɚɧɢɢ ɨɬ ɢɫɬɨɱɧɢɤɚ ɬɨɤɚ ɢɦɟɟɬ ɜɢɞ

 

 

ɤɬ

,

ɝɞɟ Įs

Ȧ0 Ȧ

,

Ɇ

Įs

 

Įsɤɬ

 

Ȧ

 

 

Įsɤɬ

Įs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rc

 

 

 

0,268

 

 

 

Įsɤɬ

r

 

2

 

r

 

r0,02.

xμ ɯc2

 

12,8 0,7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ȼ ɪɟɠɢɦɟ ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɬɨɪɦɨɠɟɧɢɹ Ȧ0 = 0, ɆɄɌ = 2·ɆɁȺȾ = 2·0,8·198 = 316,8 ɇɦ.

Ɂɚɞɚɜɚɹɫɶ ɚɛɫɨɥɸɬɧɵɦ ɫɤɨɥɶɠɟɧɢɟɦ Ds, ɚ ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɢ ɫɤɨɪɨɫɬɶɸ ɞɜɢɝɚɬɟɥɹ Ȧ = Ds·Ȧ, ɪɚɫɫɱɢɬɵɜɚɟɬɫɹ ɦɨɦɟɧɬ ɞɜɢɝɚɬɟɥɹ ɢ ɫɬɪɨɢɬɫɹ ɟɫɬɟɫɬɜɟɧɧɚɹ ɦɟɯɚɧɢɱɟɫɤɚɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɬɨɪɦɨɠɟɧɢɹ (ɩɪɢ ɨɬɫɭɬɫɬɜɢɢ ɞɨɛɚɜɨɱɧɵɯ ɫɨɩɪɨɬɢɜɥɟɧɢɣ ɜ ɰɟɩɢ ɪɨɬɨɪɚ).

Ⱦɥɹ ɪɚɫɱɟɬɚ ɞɨɛɚɜɨɱɧɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɜ ɰɟɩɢ ɪɨɬɨɪɚ ɨɩɪɟɞɟɥɢɦ ɚɛɫɨɥɸɬɧɨɟ ɫɤɨɥɶɠɟɧɢɟ ɧɚ ɟɫɬɟɫɬɜɟɧɧɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɟ ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɬɨɪɦɨɠɟɧɢɹ ɩɪɢ

μ = ɆɄɌ / ɆɁȺȾ:

 

 

ĮsȿɋɌ ĮsɄɌ/(μ r

2

1)

0,02/(2 r

(22

1) 0,00536.

Ⱦɨɛɚɜɨɱɧɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɜ ɰɟɩɢ ɪɨɬɨɪɚ (ɢɡ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɫɬɢ ɫɤɨɥɶɠɟɧɢɣ ɢ ɫɨɩɪɨɬɢɜɥɟɧɢɣ), ɨɛɟɫɩɟɱɢɜɚɸɳɟɟ ɪɚɛɨɬɭ ɜ ɡɚɞɚɧɧɨɣ ɬɨɱɤɟ,

Rc

ĮsɂɋɄ

rc

rc

0,4

0,268 0,268 19,736 Ɉɦ.

 

 

2ȾɈȻ

ĮsȿɋɌ

2

2

0,00536

 

Ⱦɥɹ ɪɚɫɱɟɬɚ ɷɥɟɤɬɪɨɦɟɯɚɧɢɱɟɫɤɢɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɢɫɩɨɥɶɡɭɸɬ ɡɚɤɨɧ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɬɨɤɨɜ ɜ ɩɚɪɚɥɥɟɥɶɧɵɯ ɰɟɩɹɯ. Ɂɚɞɚɸɬɫɹ ɚɛɫɨɥɸɬɧɵɦ ɫɤɨɥɶɠɟɧɢɟɦ ɢ ɩɪɢ ɩɨɫɬɨɹɧɫɬɜɟ ɬɨɤɚ ɫɬɚɬɨɪɚ ɪɚɫɫɱɢɬɵɜɚɸɬɫɹ ɬɨɤ ɪɨɬɨɪɚ ɢ ɬɨɤ ɧɚɦɚɝɧɢɱɢɜɚɧɢɹ.

151

 

Ɍɨɤ ɪɨɬɨɪɚ ɜ ɡɚɞɚɧɧɨɣ ɬɨɱɤɟ

 

 

 

 

 

 

 

 

 

 

 

 

 

Ic2

I1

 

 

 

 

 

 

ɯμ

 

 

 

 

36,96

 

 

 

 

12,8

 

 

 

 

 

9,13 Ⱥ.

 

 

 

 

·2

 

 

 

 

 

§

0,268 19,736 ·2

 

 

 

 

 

 

§

 

R

 

 

 

 

 

xc

 

(12,8 0,7)

2

 

¨

 

 

 

2

 

¸

(x

μ

)2

¨

 

 

 

 

¸

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¨

 

 

 

 

¸

 

 

 

 

2

 

©

0,4

¹

 

 

 

 

 

 

 

©

ĮsɂɋɄ ¹

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ɍɨɤ ɧɚɦɚɝɧɢɱɢɜɚɧɢɹ ɜ ɡɚɞɚɧɧɨɣ ɬɨɱɤɟ

 

 

 

 

 

 

 

 

 

 

 

 

 

§

 

Rc

·

2

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

§0,268

19,732 ·

 

 

 

 

 

 

 

¨

 

 

2

¸

xc2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,7

2

 

 

 

 

 

 

¨

 

 

 

 

 

¸

 

 

 

2

 

 

 

¨

 

 

 

 

 

¸

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iμ

I1

 

©

ĮsɂɋɄ ¹

 

 

 

 

36,96

 

 

©

 

0,4

 

 

¹

 

 

 

35,68 A .

 

 

 

 

·2

 

 

 

 

 

 

§0,268 19,732 ·2

 

 

 

 

 

 

§

 

Rc

 

 

 

 

 

 

 

 

 

(12,8

 

2

 

¨

 

 

2

 

¸

 

(x

μ

xc )2

¨

 

 

 

 

¸

0,7)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¨Į

sɂɋɄ

¸

 

 

 

2

 

©

 

0,4

¹

 

 

 

 

 

 

 

©

 

 

¹

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ɋɚɫɱɟɬɵ ɜɵɩɨɥɧɹɥɢɫɶ ɩɪɢ ɩɨɫɬɨɹɧɫɬɜɟ ɢɧɞɭɤɬɢɜɧɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɤɨɧɬɭɪɚ ɧɚɦɚɝɧɢɱɢɜɚɧɢɹ, ɬɨɝɞɚ ɤɚɤ ɩɪɢ ɩɢɬɚɧɢɢ ɨɬ ɢɫɬɨɱɧɢɤɚ ɬɨɤɚ ɬɨɤ ɧɚɦɚɝɧɢɱɢɜɚɧɢɹ ɫɭɳɟɫɬɜɟɧɧɨ ɢɡɦɟɧɹɟɬɫɹ ɩɪɢ ɢɡɦɟɧɟɧɢɢ ɬɨɤɚ ɪɨɬɨɪɚ (ɩɨ ɚɧɚɥɨɝɢɢ ɫ ɞɜɢɝɚɬɟɥɟɦ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ – ɪɟɚɤɰɢɹ ɹɤɨɪɹ). ɇɟɭɱɺɬ ɢɡɦɟɧɟɧɢɹ ɏP ɩɪɢɜɨɞɢɬ ɤ ɡɧɚɱɢɬɟɥɶɧɵɦ ɩɨɝɪɟɲɧɨɫɬɹɦ, ɚ ɭɱɟɬ – ɜɟɞɟɬ ɤ ɭɫɥɨɠɧɟɧɢɸ ɪɚɫɱɟɬɚ. ɉɪɢɦɟɧɟɧɢɟ ɗȼɆ ɩɨɡɜɨɥɹɟɬ ɭɬɨɱɧɢɬɶ ɩɪɟɞɜɚɪɢɬɟɥɶɧɵɣ ɪɚɫɱɟɬ ɫ ɭɱɟɬɨɦ ɤɪɢɜɨɣ ɧɚɦɚɝɧɢɱɢɜɚɧɢɹ

(ɩɪɨɝɪɚɦɦɚ «harad» [5]).

ɍɱɟɬ ɢɡɦɟɧɟɧɢɹ ɯP ɩɪɢ ɪɚɫɱɟɬɧɵɯ ɩɚɪɚɦɟɬɪɚɯ ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɬɨɪɦɨɠɟɧɢɹ (R2 = 20 Ɉɦ ɢ I1 = 36,95 Ⱥ) ɩɨɡɜɨɥɢɥ ɨɩɪɟɞɟɥɢɬɶ ɩɪɢ ɫɤɨɪɨɫɬɢ ȦɁȺȾ = 0,4 ɦɨɦɟɧɬ ɞɜɢɝɚɬɟɥɹ Ɇ = 0,24·ɆɁȺȾ. ɉɟɪɟɪɚɫɱɺɬ ɞɨɛɚɜɨɱɧɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ – ɭɦɟɧɶɲɟɧɢɟ R2ȾɈȻ ɜ 1 / 0,24 ɪɚɡɚ ɢɡ ɩɪɟɞɩɨɥɨɠɟɧɢɹ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɫɬɢ ɫɤɨɥɶɠɟɧɢɹ ɢ ɫɨɩɪɨɬɢɜɥɟɧɢɹ – ɩɪɢɜɨɞɢɬ ɤ ɭɜɟɥɢɱɟɧɢɸ ɦɨɦɟɧɬɚ. ɇɚ ɪɢɫ. 3.78 ɩɪɢ ɡɚɞɚɧɧɨɣ ɫɤɨɪɨɫɬɢ ȦɁȺȾ = 0,4 (ɬɨɱɤɚ 2) ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ, ɪɚɫɫɱɢɬɚɧɧɚɹ ɫ ɭɱɟɬɨɦ ɤɪɢɜɨɣ ɧɚɦɚɝɧɢɱɢɜɚɧɢɹ ɢ R2 = 5,745 Ɉɦ, ɨɛɟɫɩɟɱɢɜɚɟɬ ɦɨɦɟɧɬ Ɇ = 0,75·ɆɁȺȾ.

Ɋɢɫ. 3.78. Ɇɟɯɚɧɢɱɟɫɤɢɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɬɨɪɦɨɡɧɵɯ ɪɟɠɢɦɨɜ, ɩɪɨɯɨɞɹɳɢɟ ɱɟɪɟɡ ɡɚɞɚɧɧɭɸ ɬɨɱɤɭ

ȼɵɜɨɞ: ɞɚɠɟ ɞɥɹ ɩɪɢɛɥɢɠɟɧɧɨɝɨ ɪɚɫɱɟɬɚ ɪɟɠɢɦɚ ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɬɨɪɦɨɠɟɧɢɹ, ɤɚɤ ɢ ɥɸɛɨɝɨ ɪɟɠɢɦɚ ɩɪɢ ɩɢɬɚɧɢɢ ȺȾ ɨɬ ɢɫɬɨɱɧɢɤɚ ɬɨɤɚ, ɧɭɠɧɨ ɭɱɢɬɵɜɚɬɶ ɢɡɦɟɧɟɧɢɟ ɢɧɞɭɤɬɢɜɧɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɯP ɤɨɧɬɭɪɚ ɧɚɦɚɝɧɢɱɢɜɚɧɢɹ ɩɪɢ ɢɡɦɟɧɟɧɢɢ ɬɨɤɚ ɪɨɬɨɪɚ.

3.5.4. Ɇɟɯɚɧɢɱɟɫɤɢɟ ɩɟɪɟɯɨɞɧɵɟ ɩɪɨɰɟɫɫɵ ȺȾ

Ⱦɥɹ ɪɚɫɱɺɬɚ ɩɟɪɟɯɨɞɧɵɯ ɩɪɨɰɟɫɫɨɜ ɩɪɢ ɧɟɥɢɧɟɣɧɵɯ ɦɟɯɚɧɢɱɟɫɤɢɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚɯ ɢɫɩɨɥɶɡɭɸɬ ɦɟɬɨɞɵ ɭɫɪɟɞɧɟɧɢɹ ɢɥɢ ɥɢɧɟɚɪɢɡɚɰɢɢ (ɫɦ. ɩ. 3.2.5). Ɇɟɯɚɧɢɱɟɫɤɢɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ȺȾ ɧɟɥɢɧɟɣɧɵ. Ⱦɥɹ ɩɪɢɛɥɢɠɟɧɧɵɯ ɪɚɫɱɟɬɨɜ ɢɧɨɝɞɚ ɩɪɢɦɟɧɹɸɬ ɪɚɫɱɟɬɵ ɧɚɝɪɭɡɨɱɧɵɯ ɞɢɚɝɪɚɦɦ ɫ ɩɪɹɦɨɥɢɧɟɣɧɵɦɢ ɦɟɯɚɧɢɱɟɫɤɢɦɢ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚɦɢ ɪɚɛɨɱɟɝɨ ɭɱɚɫɬɤɚ. ɉɪɢ ɧɟɥɢɧɟɣɧɵɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚɯ ɲɢɪɨɤɨ ɢɫɩɨɥɶɡɭɸɬɫɹ ɱɢɫɥɟɧɧɵɟ ɦɟɬɨɞɵ ɪɚɫɱɟɬɚ ɧɚ ɗȼɆ.

Ⱦɥɹ ɪɚɫɱɺɬɚ ɦɟɯɚɧɢɱɟɫɤɢɯ ɩɟɪɟɯɨɞɧɵɯ ɩɪɨɰɟɫɫɨɜ ȺȾ ɢɫɩɨɥɶɡɭɸɬ ɨɫɧɨɜɧɨɟ ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɢ ɭɪɚɜɧɟɧɢɟ ɦɟɯɚɧɢɱɟɫɤɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ

M MC J ; Ɇ = ȕ·(Ȧ– Ȧ). dt

Ⱦɥɹ ɪɚɫɱɟɬɨɜ ɧɚɝɪɭɡɨɱɧɵɯ ɞɢɚɝɪɚɦɦ ɫ ɭɱɟɬɨɦ ɤɪɢɜɢɡɧɵ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɩɪɢ ɜɵɩɨɥɧɟɧɢɢ ɤɨɧɬɪɨɥɶɧɵɯ ɡɚɞɚɧɢɣ ɢ ɜ ɤɭɪɫɨɜɨɦ ɩɪɨɟɤɬɢɪɨɜɚɧɢɢ ɦɨɠɧɨ ɜɨɫɩɨɥɶɡɨɜɚɬɶɫɹ ɩɪɨɝɪɚɦɦɨɣ READ, ɤɨɬɨɪɚɹ ɪɟɲɚɟɬ ɫɢɫɬɟɦɭ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɵɯ ɭɪɚɜɧɟɧɢɣ ɚɫɢɧɯɪɨɧɧɨɝɨ ɷɥɟɤɬɪɨɩɪɢɜɨɞɚ ɜ ɩɪɨɰɟɞɭɪɟ Ɋɭɧɝɟ-Ʉɭɬɬɚ. Ɋɚɫɱɟɬ ɬɨɤɨɜ ɜɨ ɜɪɟɦɹ ɩɟɪɟɯɨɞɧɨɝɨ ɩɪɨɰɟɫɫɚ ɜɵɩɨɥɧɹɟɬɫɹ ɜ ɩɪɨɝɪɚɦɦɟ «harad».

ɉɪɢɦɟɪ 3.14. Ɋɚɫɫɱɢɬɚɬɶ ɢ ɩɨɫɬɪɨɢɬɶ ɧɚɝɪɭɡɨɱɧɵɟ ɞɢɚɝɪɚɦɦɵ Ɇ(t) ɢ Ȧ(t) ɩɭɫɤɚ ɢ ɬɨɪɦɨɠɟɧɢɹ ɩɪɨɬɢɜɨɜɤɥɸɱɟɧɢɟɦ ɚɫɢɧɯɪɨɧɧɨɝɨ ɞɜɢɝɚɬɟɥɹ 4ȺɄ200Ɇ8 (ɤɚɬɚɥɨɠɧɵɟ ɞɚɧɧɵɟ – ɜ ɩɪɢɦɟɪɟ 3.7) ɩɪɢ Ɇɋ = 0,5 ɢ J = 2·JȾȼ ɡɚ ɦɢɧɢɦɚɥɶɧɨɟ ɜɪɟɦɹ.

ɉɪɚɜɢɥɶɧɚɹ ɩɭɫɤɨɜɚɹ ɞɢɚɝɪɚɦɦɚ ɪɚɫɫɱɢɬɚɧɚ ɩɨ ɦɟɬɨɞɢɤɟ 3.5.9:

Ɇɚɤɫɢɦɚɥɶɧɵɣ ɩɭɫɤɨɜɨɣ ɦɨɦɟɧɬ Ɇ1 = 2,4·Ɇɇ = 475,2 ɇɦ;

Ɇɨɦɟɧɬ ɩɟɪɟɤɥɸɱɟɧɢɹ Ɇ2 = 1,05·Ɇɇ = 207,9 ɇɦ;

Ɇɨɦɟɧɬ ɫɬɚɬɢɱɟɫɤɢɣ Ɇɋ = 0,5·Ɇɇ = 99 ɇɦ;

ɉɨɥɧɵɟ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɪɨɬɨɪɧɨɣ ɰɟɩɢ ɞɥɹ ɩɭɫɤɚ ɩɨ ɫɬɭɩɟɧɹɦ: R1 = 3,094 Ɉɦ, R2 = 1,358 Ɉɦ, R3 = 0,534 Ɉɦ, r2 = 0,268 Ɉɦ.

Ⱦɥɹ ɪɚɫɱɟɬɚ ɬɨɪɦɨɡɧɨɝɨ ɪɟɠɢɦɚ ɜɨɫɩɨɥɶɡɭɟɦɫɹ ɦɚɤɫɢɦɚɥɶɧɵɦ ɬɨɪɦɨɡɧɵɦ ɦɨɦɟɧɬɨɦ.

ɇɚɱɚɥɶɧɵɣ ɬɨɪɦɨɡɧɨɣ ɦɨɦɟɧɬ Ɇ = – 2,4·Ɇɇ = – 475,2 ɇɦ;

ɇɚɱɚɥɶɧɚɹ ɫɤɨɪɨɫɬɶ ȦɌɇȺɑ = 0,9825·Ȧ= 77,13 ɪɚɞ/ɫ;

Ɇɨɦɟɧɬ ɫɬɚɬɢɱɟɫɤɢɣ Ɇɋ = 0,5·Ɇɇ= 99 ɇɦ;

ɉɨɥɧɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɮɚɡɵ ɪɨɬɨɪɧɨɣ ɰɟɩɢ R2ɉȼ = 6,325 Ɉɦ.

Ɋɚɫɱɟɬ ɜɵɩɨɥɧɟɧ ɜ ɩɪɨɝɪɚɦɦɟ READ ɫ ɭɱɟɬɨɦ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɣ ɩɨɫɬɨɹɧɧɨɣ ɜɪɟɦɟɧɢ Ɍɗ. ɇɚ ɪɢɫ. 3.79 ɩɪɢɜɟɞɟɧɵ ɧɚɝɪɭɡɨɱɧɵɟ ɞɢɚɝɪɚɦɦɵ ɢ ɢɧɬɟɝɪɚɥɶɧɵɟ ɩɨɤɚɡɚɬɟɥɢ ɩɟɪɟɯɨɞɧɵɯ ɩɪɨɰɟɫɫɨɜ ɩɭɫɤɚ ɢ ɬɨɪɦɨɠɟɧɢɹ ɩɪɨɬɢɜɨɜɤɥɸɱɟɧɢɟɦ ɞɜɢɝɚɬɟɥɹ 4ȺɄ200Ɇ8.

ɉɭɫɤ ɞɜɢɝɚɬɟɥɹ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɜ ɬɪɢ ɫɬɭɩɟɧɢ. ɂɡ ɧɚɝɪɭɡɨɱɧɵɯ ɞɢɚɝɪɚɦɦ ɦɨɠɧɨ ɨɰɟɧɢɬɶ ɜɪɟɦɹ ɪɚɛɨɬɵ ɧɚ ɤɚɠɞɨɣ ɫɬɭɩɟɧɢ, ɜɪɟɦɹ ɩɭɫɤɚ tɉ = 0,45 ɫ. Ɉɬɤɥɨɧɟɧɢɹ ɦɨɦɟɧɬɨɜ Ɇ1 ɢ Ɇ2 ɨɬ ɡɚɞɚɧɧɵɯ ɡɧɚɱɟɧɢɣ ɧɟɡɧɚɱɢɬɟɥɶɧɨ, ɜɥɢɹɧɢɟ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɣ ɩɨɫɬɨɹɧɧɨɣ ɜɪɟɦɟɧɢ Ɍɗ ɜɢɞɧɨ ɧɚ ɩɟɪɜɨɣ ɫɬɭɩɟɧɢ, ɝɞɟ ɬɨɤ ɢ ɦɨɦɟɧɬ ɧɚɪɚɫɬɚɸɬ ɧɟ ɫɤɚɱɤɨɦ, ɢ ɩɪɢ ɜɵɯɨɞɟ ɧɚ ɟɫɬɟɫɬɜɟɧɧɭɸ ɯɚɪɚɤɬɟɪɢɫɬɢɤɭ, ɝɞɟ ɬɨɤ ɢ ɦɨɦɟɧɬ ɧɟ ɭɫɩɟɜɚɸɬ ɞɨɫɬɢɱɶ ɡɚɞɚɧɧɵɯ ɪɚɫɱɟɬɧɵɯ ɡɧɚɱɟɧɢɣ.

Ɍɨɪɦɨɠɟɧɢɟ ɩɪɨɬɢɜɨɜɤɥɸɱɟɧɢɟɦ ɩɪɨɢɡɜɟɞɟɧɨ ɡɚ ɜɪɟɦɹ tɉȼ = 0,21 ɫ ɢ ɨɫɭɳɟɫɬɜɥɟɧɨ ɧɚ ɧɚɱɚɥɶɧɵɯ ɭɱɚɫɬɤɚɯ ɷɤɫɩɨɧɟɧɰɢɚɥɶɧɵɯ ɡɚɜɢɫɢɦɨɫɬɟɣ Ɇ(t) ɢ I(t).

Ⱦɥɹ ɪɚɫɱɟɬɚ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɩɨɤɚɡɚɬɟɥɟɣ ɡɚ ɜɪɟɦɹ ɩɟɪɟɯɨɞɧɨɝɨ ɩɪɨɰɟɫɫɚ ɩɭɫɤɚ ɢ ɬɨɪɦɨɠɟɧɢɹ ɜɨɫɩɨɥɶɡɭɟɦɫɹ ɢɧɬɟɝɪɚɥɶɧɵɦɢ ɩɨɤɚɡɚɬɟɥɹɦɢ ɢɡ ɩɪɨɝɪɚɦɦɵ

«READ» (ɫɦ. ɪɢɫ. 3.79).

Ɋɢɫ. 3.79. ɇɚɝɪɭɡɨɱɧɵɟ ɞɢɚɝɪɚɦɦɵ ɪɟɨɫɬɚɬɧɨɝɨ ɩɭɫɤɚ ɢ ɬɨɪɦɨɠɟɧɢɹ ɩɪɨɬɢɜɨɜɤɥɸɱɟɧɢɟɦ ȺȾ

Ʉɨɷɮɮɢɰɢɟɧɬ ɩɨɥɟɡɧɨɝɨ ɞɟɣɫɬɜɢɹ ɷɥɟɤɬɪɨɩɪɢɜɨɞɚ ɡɚ ɰɢɤɥ

Kɰ = Ⱥ / Ɋ = 3073,24 / 17818,94 = 0,172.

Ʉɨɷɮɮɢɰɢɟɧɬ ɦɨɳɧɨɫɬɢ ɡɚ ɰɢɤɥ

P

 

17818,94

 

cosijɐ

 

 

 

0,835.

P2 Q2

17818,942 11759,472

ɋɪɟɞɧɟɤɜɚɞɪɚɬɢɱɧɵɣ ɬɨɤ ɞɜɢɝɚɬɟɥɹ

 

 

 

IɋɊɄȼ

I1Ʉȼtt

1568,2

46,83

Ⱥ.

t

0,715

 

 

 

154

3.5.4. ɍɩɪɚɠɧɟɧɢɹ ɞɥɹ ɫɚɦɨɩɪɨɜɟɪɤɢ

(ɪɚɫɱɟɬɵ ɜɵɩɨɥɧɹɸɬɫɹ ɜ ɨɬɧɨɫɢɬɟɥɶɧɵɯ ɟɞɢɧɢɰɚɯ)

3.5.4.1.Ɉɩɪɟɞɟɥɢɬɶ ɫɤɨɪɨɫɬɶ ȺȾ ɩɪɢ Ɇɋ = 1 ɢ R2 = 1.

3.5.4.2.Ɉɩɪɟɞɟɥɢɬɶ ɫɤɨɪɨɫɬɶ ȺȾ ɧɚ ɟɫɬɟɫɬɜɟɧɧɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɟ ɩɪɢ Ɇɋ = 2.

ɉɪɢɧɹɬɶ Sɇ = 0,05.

3.5.4.3. Ɉɩɪɟɞɟɥɢɬɶ ɫɤɨɪɨɫɬɶ ȺȾ ɩɪɢ ɜɜɟɞɟɧɢɢ ɜ ɰɟɩɶ ɪɨɬɨɪɚ

R2ȾɈȻ = 0,5. ɉɪɢɧɹɬɶ Sɇ = 0,05, Ɇɋ = 1.

3.5.4.4.Ɉɩɪɟɞɟɥɢɬɶ ɜɟɥɢɱɢɧɭ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɜ ɰɟɩɢ ɪɨɬɨɪɚ ȺȾ, ɨɛɟɫɩɟɱɢɜɚɸɳɟɝɨ ɩɭɫɤɨɜɨɣ ɦɨɦɟɧɬ Ɇ = 2.

3.5.4.5.Ɉɩɪɟɞɟɥɢɬɶ R2 ȺȾ, ɱɬɨɛɵ ɩɪɢ Ɇɋ = 1 ɩɨɥɭɱɢɬɶ Ȧ = 0,7.

3.5.4.6.ȺȾ ɪɚɛɨɬɚɟɬ ɧɚ ɯɨɥɨɫɬɨɦ ɯɨɞɭ. Ɉɩɪɟɞɟɥɢɬɶ R2, ɨɛɟɫɩɟɱɢɜɚɸɳɟɟ ɦɨɦɟɧɬ ɩɟɪɟɤɥɸɱɟɧɢɹ ɜ ɪɟɠɢɦ ɩɪɨɬɢɜɨɜɤɥɸɱɟɧɢɹ, ɦɨɦɟɧɬ ɞɜɢɝɚɬɟɥɹ Ɇ = 2.

3.5.4.7.ȼɨ ɫɤɨɥɶɤɨ ɪɚɡ ɢɡɦɟɧɢɬɫɹ ɫɤɨɪɨɫɬɶ ȺȾ, ɟɫɥɢ ɭɜɟɥɢɱɢɬɶ ɫɨɩɪɨɬɢɜɥɟɧɢɟ

ɪɨɬɨɪɧɨɣ ɰɟɩɢ ɜ 5 ɪɚɡ. ɉɪɢɧɹɬɶ Ɇɋ = 1, Sɇ = 0,1.

 

3.5.4.8. Ɉɩɪɟɞɟɥɢɬɶ ɫɤɨɪɨɫɬɶ ɞɜɢɝɚɬɟɥɹ, ɟɫɥɢ ɩɪɢ

ɪɚɛɨɬɟ ȺȾ ɫ

Ɇɋ = 1 ɧɚ ɟɫɬɟɫɬɜɟɧɧɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɟ (ɆɄ / Ɇɇ = 3)

ɧɚɩɪɹɠɟɧɢɟ ɧɚ ɫɬɚ-

ɬɨɪɟ ɫɧɢɡɢɥɨɫɶ ɜɞɜɨɟ.

 

3.5.4.9.ȼɨ ɫɤɨɥɶɤɨ ɪɚɡ ɢɡɦɟɧɢɬɫɹ ɠɟɫɬɤɨɫɬɶ ɦɟɯɚɧɢɱɟɫɤɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ȺȾ, ɟɫɥɢ ɧɚɩɪɹɠɟɧɢɟ ɧɚ ɫɬɚɬɨɪɟ ɫɧɢɡɢɥɨɫɶ ɜɞɜɨɟ?

3.5.4.10.ȼɨ ɫɤɨɥɶɤɨ ɪɚɡ ɢɡɦɟɧɢɬɫɹ ɠɟɫɬɤɨɫɬɶ ɦɟɯɚɧɢɱɟɫɤɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ, ɟɫɥɢ ɩɪɢ ɩɢɬɚɧɢɢ ȺȾ ɨɬ ɢɫɬɨɱɧɢɤɚ ɬɨɤɚ ɬɨɤ ɫɬɚɬɨɪɚ ɜɨɡɪɨɫ ɜɞɜɨɟ?

3.5.4.11.Ɉɩɪɟɞɟɥɢɬɶ ɱɚɫɬɨɬɭ ɢ ɧɚɩɪɹɠɟɧɢɟ ȺȾ, ɨɛɟɫɩɟɱɢɜɚɸɳɢɟ ɟɝɨ ɪɚɛɨɬɭ ɜ ɬɨɱɤɟ Ɇɋ = 0,5 ɢ Ȧɋ = 0,2, ɟɫɥɢ Sɇ = 0,1.

3.5.4.12.Ɉɩɪɟɞɟɥɢɬɶ ɪɟɠɢɦ ɪɚɛɨɬɵ ȺȾ, ɫɤɨɪɨɫɬɶ ɢ ɦɨɦɟɧɬ, ɟɫɥɢ ɱɚɫɬɨɬɚ ɫɟɬɢ Į

= – 0,5, Ɇɋ = 1, Sɇ = 0,1. ɉɪɢɧɹɬɶ U / f = const.

3.5.4.13.Ɉɩɪɟɞɟɥɢɬɶ ɫɤɨɪɨɫɬɶ ȺȾ, ɟɫɥɢ ɩɪɢ Ɇɋ = 1 ɢ Ȧɋ = 0,8 ɱɚɫɬɨɬɚ ɬɨɤɚ ɫɟɬɢ ɫɧɢɡɢɥɚɫɶ ɧɚ 0,1 ɩɪɢ U / f = const.

3.5.4.14.ɉɪɢ ɪɚɛɨɬɟ ȺȾ ɫ Ɇɋ = 1, Į = 0,5, U1 = 0,5 ɦɨɦɟɧɬ ɜɨɡɪɨɫ ɜɞɜɨɟ. Ɉɩɪɟɞɟɥɢɬɶ ɡɧɚɱɟɧɢɹ f1 ɢ U1, ɱɬɨɛɵ ɜɨɫɫɬɚɧɨɜɢɬɶ ɡɧɚɱɟɧɢɟ ɫɤɨɪɨɫɬɢ. ɉɪɢɧɹɬɶ

Sɇ = 0,1.

3.5.4.15.ȼɨ ɫɤɨɥɶɤɨ ɪɚɡ ɢɡɦɟɧɹɬɫɹ ɫɤɨɪɨɫɬɶ ɫɩɭɫɤɚ ɢ ɬɨɤ ɪɨɬɨɪɚ ɩɪɢ ɪɚɛɨɬɟ ȺȾ ɜ ɪɟɠɢɦɟ ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɬɨɪɦɨɠɟɧɢɹ, ɟɫɥɢ:

ɬɨɤ ɫɬɚɬɨɪɚ ɭɜɟɥɢɱɢɬɶ ɜɞɜɨɟ?

ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɪɨɬɨɪɚ ɭɜɟɥɢɱɢɬɶ ɜɞɜɨɟ?

3.5.4.16.ɋɨɩɪɨɬɢɜɥɟɧɢɟ ɜ ɰɟɩɢ ɪɨɬɨɪɚ ɭɜɟɥɢɱɢɥɢ ɜɞɜɨɟ. ȼɨ ɫɤɨɥɶɤɨ ɪɚɡ ɢɡɦɟɧɢɬɫɹ ɜɪɟɦɹ ɩɭɫɤɚ?

3.5.4.17.ȺȾ ɪɚɛɨɬɚɟɬ ɧɚ ɯɨɥɨɫɬɨɦ ɯɨɞɭ. ȼɨ ɫɤɨɥɶɤɨ ɪɚɡ ɢɡɦɟɧɢɬɫɹ ɜɪɟɦɹ ɩɟɪɟɯɨɞɧɨɝɨ ɩɪɨɰɟɫɫɚ, ɟɫɥɢ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɪɨɬɨɪɚ ɭɦɟɧɶɲɢɬɶ ɜɞɜɨɟ ɜ ɪɟɠɢɦɚɯ:

ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɬɨɪɦɨɠɟɧɢɹ?

ɩɪɨɬɢɜɨɜɤɥɸɱɟɧɢɹ?

155

3.6.

ɗɥɟɤɬɪɨɦɟɯɚɧɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɫɢɧɯɪɨɧɧɨɝɨ ɞɜɢɝɚɬɟɥɹ

 

 

 

 

3.6.1. Ɉɫɨɛɟɧɧɨɫɬɢ ɋȾ

ɋɢɧɯɪɨɧɧɵɣ ɞɜɢɝɚɬɟɥɶ (ɋȾ) ɛɥɚɝɨɞɚɪɹ ɯɨɪɨɲɢɦ ɷɧɟɪɝɟɬɢɱɟɫɤɢɦ ɩɨɤɚɡɚɬɟ-

ɥɹɦ ɩɨ ɄɉȾ ɢ ɤɨɷɮɮɢɰɢɟɧɬɭ ɦɨɳɧɨɫɬɢ ɢ ɩɨɜɵɲɟɧɧɨɣ ɧɚɞɟɠɧɨɫɬɢ ɜ ɫɜɹɡɢ ɫɨ

ɡɧɚɱɢɬɟɥɶɧɵɦ ɜɨɡɞɭɲɧɵɦ ɡɚɡɨɪɨɦ ɦɟɠɞɭ ɫɬɚɬɨɪɨɦ ɢ ɪɨɬɨɪɨɦ ɜɫɟ ɛɨɥɶɲɟ ɜɵ-

ɬɟɫɧɹɸɬ ɚɫɢɧɯɪɨɧɧɵɟ ɞɜɢɝɚɬɟɥɢ ɜ ɦɨɳɧɵɯ ɭɫɬɚɧɨɜɤɚɯ ɫ ɞɥɢɬɟɥɶɧɵɦ ɪɟɠɢɦɨɦ

ɪɚɛɨɬɵ. ɋȾ ɫɬɚɥ ɦɨɧɨɩɨɥɶɧɵɦ ɞɥɹ ɤɪɭɩɧɵɯ ɤɨɦɩɪɟɫɫɨɪɨɜ ɢ ɧɚɫɨɫɨɜ, ɞɥɹ ɝɥɚɜ-

ɧɵɯ ɩɪɢɜɨɞɨɜ ɧɟɩɪɟɪɵɜɧɵɯ ɧɟɪɟɝɭɥɢɪɭɟɦɵɯ ɩɪɨɤɚɬɧɵɯ ɫɬɚɧɨɜ, ɞɥɹ ɩɪɢɜɨɞɨɜ

 

~

 

 

~

 

ɛɨɥɶɲɨɣ ɢ ɫɪɟɞɧɟɣ ɦɨɳɧɨɫɬɢ ɜ ɰɟ-

 

 

 

 

ɦɟɧɬɧɨɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ.

 

 

 

 

 

 

ɋɢɧɯɪɨɧɧɵɣ ɞɜɢɝɚɬɟɥɶ – ɦɚɲɢɧɚ

 

 

 

 

 

 

ɩɟɪɟɦɟɧɧɨɝɨ ɬɨɤɚ, ɭ ɤɨɬɨɪɨɣ ɨɛɦɨɬɤɚ

 

M

 

 

M

 

ɫɬɚɬɨɪɚ ɩɟɪɟɦɟɧɧɨɝɨ ɬɨɤɚ, ɤɚɤ ɭ ȺȾ.

 

 

 

 

 

 

 

 

 

 

 

ɉɪɢ ɩɨɞɤɥɸɱɟɧɢɢ ɫɬɚɬɨɪɚ ɤ ɫɟɬɢ

 

 

 

 

 

 

ɬɪɟɯɮɚɡɧɨɝɨ ɬɨɤɚ ɫɨɡɞɚɟɬɫɹ ɜɪɚ-

Iȼ

 

 

 

 

 

ɳɚɸɳɟɟɫɹ ɦɚɝɧɢɬɧɨɟ ɩɨɥɟ. Ɉɛɦɨɬɤɚ

 

 

 

 

 

ɪɨɬɨɪɚ – ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ, ɪɚɡɦɟɳɚ-

+

 

-

+

 

-

ɚ)

ɛ)

ɟɬɫɹ ɧɚ ɩɨɥɸɫɚɯ – ɭ ɋȾ ɫ ɹɜɧɨɩɨɥɸɫ-

 

 

 

 

Ɋɢɫ. 3.80. ɍɫɥɨɜɧɨɟ ɨɛɨɡɧɚɱɟɧɢɟ

ɧɵɦ ɪɨɬɨɪɨɦ ɢɥɢ ɭɥɨɠɟɧɚ ɜ ɩɚɡɵ ɪɨ-

ɬɨɪɚ – ɭ ɧɟɹɜɧɨɩɨɥɸɫɧɵɯ ɋȾ. ɉɨɞɚɱɚ

 

ɹɜɧɨɩɨɥɸɫɧɨɝɨ (ɚ)

 

 

 

 

 

ɢ ɧɟɹɜɧɨɩɨɥɸɫɧɨɝɨ (ɛ) ɋȾ

 

ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɜ ɰɟɩɶ ɪɨɬɨɪɚ ɱɚɳɟ

 

 

ɜɫɟɝɨ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɱɟɪɟɡ ɤɨɧɬɚɤɬ-

 

 

 

 

 

 

 

 

 

 

 

 

ɧɵɟ ɤɨɥɶɰɚ (ɪɢɫ.3.80).

Ɉɫɨɛɟɧɧɨɫɬɢ ɋȾ:

– ɫɢɧɯɪɨɧɧɵɣ ɞɜɢɝɚɬɟɥɶ ɨɛɥɚɞɚɟɬ ɚɛɫɨɥɸɬɧɨ ɠɺɫɬɤɨɣ ɦɟɯɚɧɢɱɟɫɤɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɨɣ. ɋɤɨɪɨɫɬɶ ɞɜɢɝɚɬɟɥɹ ɨɩɪɟɞɟɥɹɟɬɫɹ ɱɚɫɬɨɬɨɣ ɩɢɬɚɸɳɟɣ ɫɟɬɢ f1. ɢ ɱɢɫɥɨɦ ɩɚɪ ɩɨɥɸɫɨɜ pɉ

 

 

2ʌ f1

.

Ȧ

 

 

 

ɨ

pɩ

 

 

ɢ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɧɚɝɪɭɡɤɢ. ȼ ɧɚɫɬɨɹɳɟɟ ɜɪɟɦɹ ɧɚɦɟɬɢɥɚɫɶ ɜɨɡɦɨɠɧɨɫɬɶ ɩɪɢɦɟɧɟɧɢɹ ɋȾ ɜ ɪɟɝɭɥɢɪɭɟɦɨɦ ɷɥɟɤɬɪɨɩɪɢɜɨɞɟ, ɞɥɹ ɢɡɦɟɧɟɧɢɹ ɫɤɨɪɨɫɬɢ ɢɫɩɨɥɶɡɭɟɬɫɹ ɩɪɟɨɛɪɚɡɨɜɚɬɟɥɶ ɱɚɫɬɨɬɵ.

ɜɚɠɧɵɦ ɩɪɟɢɦɭɳɟɫɬɜɨɦ ɤɨɧɫɬɪɭɤɰɢɢ ɋȾ ɹɜɥɹɟɬɫɹ ɛɨɥɶɲɨɣ ɜɨɡɞɭɲɧɵɣ ɡɚɡɨɪ, ɜɫɥɟɞɫɬɜɢɟ ɱɟɝɨ ɟɝɨ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɢ ɫɜɨɣɫɬɜɚ ɦɚɥɨ ɡɚɜɢɫɹɬ ɨɬ ɢɡɧɨɫɚ ɩɨɞɲɢɩɧɢɤɨɜ ɢ ɧɟɬɨɱɧɨɫɬɢ ɦɨɧɬɚɠɚ ɪɨɬɨɪɚ.

ɜɵɫɨɤɢɣ ɄɉȾ ɫɨɜɪɟɦɟɧɧɵɯ ɋȾ, ɫɨɫɬɚɜɥɹɸɳɢɣ 96…98%, ɱɬɨ ɧɚ 1… 1,5% ɜɵɲɟ ɄɉȾ ȺȾ ɬɟɯ ɠɟ ɝɚɛɚɪɢɬɨɜ ɢ ɫɤɨɪɨɫɬɢ.

ɜɨɡɦɨɠɧɨɫɬɶ ɪɟɝɭɥɢɪɨɜɚɧɢɹ ɩɟɪɟɝɪɭɡɨɱɧɨɣ ɫɩɨɫɨɛɧɨɫɬɢ ɋȾ ɡɚ ɫɱɺɬ ɪɟɝɭɥɢɪɨɜɚɧɢɹ ɬɨɤɚ ɜɨɡɛɭɠɞɟɧɢɹ ɢ ɦɟɧɶɲɚɹ ɡɚɜɢɫɢɦɨɫɬɶ ɷɬɨɝɨ ɩɨɤɚɡɚɬɟɥɹ ɨɬ ɧɚɩɪɹɠɟɧɢɹ ɫɟɬɢ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ȺȾ.

ɜɨɡɦɨɠɧɨɫɬɶ ɢɡɝɨɬɨɜɥɟɧɢɹ ɧɚ ɛɨɥɶɲɢɟ ɦɨɳɧɨɫɬɢ (ɞɨ ɧɟɫɤɨɥɶɤɢɯ ɞɟɫɹɬɤɨɜ ɦɟɝɚɜɚɬɬ).

156

– ɜɨɡɦɨɠɧɨɫɬɶ ɪɚɛɨɬɵ ɫ ɜɵɫɨɤɢɦ ɢ ɞɚɠɟ ɨɩɟɪɟɠɚɸɳɢɦ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɦɨɳɧɨɫɬɢ cos ij. Ⱦɚɠɟ ɩɪɢ ɪɚɛɨɬɟ ɜ ɞɜɢɝɚɬɟɥɶɧɨɦ ɪɟɠɢɦɟ ɋȾ ɦɨɠɟɬ ɝɟɧɟɪɢɪɨɜɚɬɶ ɜ ɫɟɬɶ ɪɟɚɤɬɢɜɧɭɸ ɷɧɟɪɝɢɸ.

Ⱦɟɣɫɬɜɢɬɟɥɶɧɨ, ɩɪɢ ɬɨɤɟ ɪɨɬɨɪɚ Iȼ = 0, ɧɚɩɪɹɠɟɧɢɟ ɫɟɬɢ U1 ɫɨɡɞɚɺɬ ɬɨɤ ɫɬɚɬɨɪɚ I1, ɤɨɬɨɪɵɣ ɜ ɫɜɨɸ ɨɱɟɪɟɞɶ ɫɨɡɞɚɺɬ ɩɨɬɨɤ Ɏ1, ɜ ɪɟɡɭɥɶɬɚɬɟ ɩɨɹɜɥɹɟɬɫɹ ɗȾɋ ɞɜɢɝɚɬɟɥɹ E1, ɤɨɬɨɪɚɹ ɢ ɭɪɚɜɧɨɜɟɲɢɜɚɟɬ ɩɪɢɥɨɠɟɧɧɨɟ ɧɚɩɪɹɠɟɧɢɟ ɫɟɬɢ U1. ȿɫɥɢ ɩɪɟɧɟɛɪɟɱɶ ɚɤɬɢɜɧɵɦ ɫɨɩɪɨɬɢɜɥɟɧɢɟɦ ɰɟɩɢ ɫɬɚɬɨɪɚ ɜ ɜɢɞɭ ɟɝɨ ɦɚɥɨɫɬɢ, ɬɨ ɞɜɢɝɚɬɟɥɶ ɩɨɬɪɟɛɥɹɟɬ ɢɡ ɫɟɬɢ ɱɢɫɬɨ ɪɟɚɤɬɢɜɧɭɸ ɷɧɟɪɝɢɸ, ɬɨ ɟɫɬɶ ij § 900. ɉɪɢ ɩɨɜɵɲɟɧɢɢ Iȼ ɗȾɋ ɫɬɚɬɨɪɚ E1, ɭɪɚɜɧɨɜɟɲɢɜɚɸɳɚɹ ɧɚɩɪɹɠɟɧɢɟ ɫɟɬɢ U1, ɫɨɡɞɚ-

ɟɬɫɹ ɬɨɤɨɦ ɪɨɬɨɪɚ Iȼ ɢ ɬɨɤɨɦ ɫɬɚɬɨɪɚ I1. ɉɨ

 

 

ɦɟɪɟ ɪɨɫɬɚ ɬɨɤɚ ɪɨɬɨɪɚ ɞɨɥɹ ɬɨɤɚ ɫɬɚɬɨɪɚ ɜ

I1

 

ɫɨɡɞɚɧɢɢ ȿ1 ɫɧɢɠɚɟɬɫɹ, ɩɨɬɪɟɛɥɟɧɢɟ ɪɟɚɤ-

Ɇ3

ɬɢɜɧɨɣ ɷɧɟɪɝɢɢ ɢɡ ɫɟɬɢ ɫɨɤɪɚɳɚɟɬɫɹ, ɱɬɨ

 

 

ɜɵɡɵɜɚɟɬ ɩɨɜɵɲɟɧɢɟ cos ij. ɉɪɢ ɞɚɥɶɧɟɣ-

 

Ɇ2

ɲɟɦ ɭɜɟɥɢɱɟɧɢɢ Iȼ (ɩɪɢ ɩɟɪɟɜɨɡɛɭɠɞɟɧɢɢ

 

 

 

ɞɜɢɝɚɬɟɥɹ) ɗȾɋ ɞɜɢɝɚɬɟɥɹ ɫɬɚɧɨɜɢɬɫɹ

 

 

ɛɨɥɶɲɟ ɧɚɩɪɹɠɟɧɢɹ ɫɟɬɢ, ɧɨ ɨɧɚ ɧɟ ɦɨɠɟɬ

ij<0

Ɇ1

ɩɪɟɜɵɫɢɬɶ ɧɚɩɪɹɠɟɧɢɟ ɫɟɬɢ. ȼ ɪɟɡɭɥɶɬɚɬɟ

 

ij>0

 

 

ɗȾɋ ɫɬɚɧɨɜɢɬɫɹ ɨɩɟɪɟɠɚɸɳɟɣ, ɞɜɢɝɚɬɟɥɶ

ɧɚɱɢɧɚɟɬ ɩɨɬɪɟɛɥɹɬɶ ɢɡ ɫɟɬɢ ɬɨɤ, ɨɩɟɪɟ-

IB

 

ɠɚɸɳɢɣ ɧɚɩɪɹɠɟɧɢɟ, ɭɝɨɥ ij > 0 – ɬɚɤɠɟ

Ɋɢɫ. 3.81. U – ɨɛɪɚɡɧɵɟ

ɨɩɟɪɟɠɚɸɳɢɣ. ɇɚ ɪɢɫ. 3.81 ɩɪɢɜɟɞɟɧɵ U –

 

ɨɛɪɚɡɧɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ, ɩɨɤɚɡɵɜɚɸɳɢɟ

ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɋȾ

 

ɢɡɦɟɧɟɧɢɟ ɬɨɤɚ ɫɬɚɬɨɪɚ I1 ɩɪɢ ɭɜɟɥɢɱɟɧɢɢ

 

ɬɨɤɚ ɪɨɬɨɪɚ Iȼ. ɉɭɧɤɬɢɪɧɚɹ ɥɢɧɢɹ ɧɚ ɪɢɫ.3.81

 

ɫɨɨɬɜɟɬɫɬɜɭɟɬ cos ij = 1.

 

3.6.2. Ɇɟɯɚɧɢɱɟɫɤɢɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɫɢɧɯɪɨɧɧɨɝɨ ɞɜɢɝɚɬɟɥɹ

ɉɨɫɥɟ ɜɯɨɠɞɟɧɢɹ ɋȾ ɜ ɫɢɧɯɪɨɧɢɡɦ ɟɝɨ ɫɤɨɪɨɫɬɶ ɩɪɢ ɢɡɦɟɧɟɧɢɹɯ ɦɨɦɟɧɬɚ ɧɚɝɪɭɡɤɢ ɧɚ ɜɚɥɭ ɞɨ ɧɟɤɨɬɨɪɨɝɨ ɦɚɤɫɢɦɚɥɶɧɨɝɨ ɡɧɚɱɟɧɢɹ MMAX ɨɫɬɚɺɬɫɹ ɩɨɫɬɨɹɧɧɨɣ ɢ ɪɚɜɧɨɣ ɭɝɥɨɜɨɣ ɫɤɨɪɨɫɬɢ ɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ Ȧ0 (ɫɢɧɯɪɨɧɧɨɣ ɫɤɨɪɨɫɬɢ ɞɜɢɝɚɬɟɥɹ).

ɉɨɷɬɨɦɭ ɟɝɨ ɦɟɯɚɧɢɱɟɫɤɚɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ ɢɦɟɟɬ ɜɢɞ ɩɪɹɦɨɣ ɝɨɪɢɡɨɧɬɚɥɶɧɨɣ ɥɢɧɢɢ, ɩɨɤɚɡɚɧɧɨɣ ɧɚ ɪɢɫ. 3.82. ȿɫɥɢ ɦɨɦɟɧɬ ɧɚɝɪɭɡɤɢ ɩɪɟɜɵɫɢɬ ɡɧɚɱɟɧɢɟ MMAX, ɬɨ ɋȾ ɜɵɩɚɞɚɟɬ ɢɡ ɫɢɧɯɪɨɧɢɡɦɚ.

 

 

Ȧ

 

Ȧ0

 

 

 

 

 

 

Ƚɟɧɟɪɚɬɨɪ-

Ⱦɜɢɝɚɬɟɥɶ-

ɧɵɣ ɪɟɠɢɦ

ɧɵɣ ɪɟɠɢɦ

 

 

 

M

0

ɆɇɈ MMAX

Ɋɢɫ. 3.82. Ɇɟɯɚɧɢɱɟɫɤɚɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ ɋȾ

Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɦɚɤɫɢɦɚɥɶɧɨɝɨ ɦɨɦɟɧɬɚ ɋȾ MMAX, ɞɨ ɤɨɬɨɪɨɝɨ ɫɨɯɪɚɧɹɟɬɫɹ ɫɢɧɯɪɨɧɧɚɹ ɪɚɛɨɬɚ ɋȾ ɫ ɫɟɬɶɸ, ɫɥɭɠɢɬ ɭɝɥɨɜɚɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ ɋȾ. Ɉɧɚ ɨɬɪɚɠɚɟɬ ɡɚɜɢɫɢɦɨɫɬɶ ɦɨɦɟɧɬɚ Ɇ ɨɬ ɭɝɥɚ Ĭ – ɭɝɥɚ ɫɞɜɢɝɚ ɦɟɠɞɭ ɗȾɋ ɫɬɚɬɨɪɚ ȿ1 ɢ ɧɚɩɪɹɠɟɧɢɟɦ ɫɟɬɢ U1.

ɉɨɥɭɱɢɦ ɭɝɥɨɜɭɸ ɯɚɪɚɤɬɟɪɢɫɬɢɤɭ ɞɥɹ ɧɟɹɜɧɨɩɨɥɸɫɧɨɝɨ ɋȾ ɩɪɢ ɩɪɟɧɟɛɪɟɠɟɧɢɢ ɚɤɬɢɜɧɵɦ ɫɨɩɪɨɬɢɜɥɟɧɢɟɦ ɨɛɦɨɬɤɢ ɫɬɚɬɨɪɚ.

ȼɟɤɬɨɪɧɚɹ ɞɢɚɝɪɚɦɦɚ ɞɥɹ ɷɬɨɝɨ ɫɥɭɱɚɹ ɩɨɤɚɡɚɧɚ ɧɚ ɪɢɫ. 3.83, ɝɞɟ ɨɛɨɡɧɚɱɟɧɨ: xC – ɢɧɞɭɤɬɢɜɧɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɮɚɡɵ ɨɛɦɨɬɤɢ ɫɬɚɬɨɪɚ; I1 – ɬɨɤ ɫɬɚɬɨɪɚ ɋȾ.

157

ɉɨɞɜɨɞɢɦɚɹ ɤ ɋȾ ɦɨɳɧɨɫɬɶ ɦɨɠɟɬ ɛɵɬɶ ɩɪɢɧɹɬɚ ɪɚɜɧɨɣ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɣ ɦɨɳɧɨɫɬɢ

P1 PɗɆ M Ȧ0 3 UɎ I cosij,

(3.96)

ɝɞɟ UɎ – ɮɚɡɧɨɟ ɧɚɩɪɹɠɟɧɢɟ ɫɟɬɢ;

ij – ɭɝɨɥ ɫɞɜɢɝɚ ɦɟɠɞɭ ɧɚɩɪɹɠɟɧɢɟɦ ɢ ɬɨɤɨɦ ɋȾ. Ɉɬɫɸɞɚ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɵɣ ɦɨɦɟɧɬ ɞɜɢɝɚɬɟɥɹ

PɗɆ 3 UɎ

I1 cosij

M

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

Ȧ0

 

 

Ȧ0

ɂɡ ɜɟɤɬɨɪɧɨɣ ɞɢɚɝɪɚɦɦɵ ɫɥɟɞɭɟɬ

 

 

 

 

UɎ cosij

E1 cos(ij 4).

Ɋɚɫɫɦɨɬɪɟɧɢɟ ɬɪɟɭɝɨɥɶɧɢɤɚ Ⱥȼɋ ɩɨɡɜɨɥɹɟɬ ɨɩɪɟɞɟɥɢɬɶ, ɱɬɨ

cos(ij 4)

UɎ sin4

,

 

 

 

 

 

 

 

 

I xɋ

ɬɨɝɞɚ (3.98) ɡɚɩɢɲɟɬɫɹ ɤɚɤ

 

 

 

 

 

 

UɎ cosij

 

E UɎ sin4

.

 

 

 

 

 

 

 

 

I xɋ

(3.97)

(3.98)

(3.99)

(3.100)

ɉɨɞɫɬɚɧɨɜɤɚ (3.100) ɜ (3.97) ɞɚɺɬ ɜɵɪɚɠɟɧɢɟ ɦɨɦɟɧɬɚ:

 

 

 

 

 

M

3 UɎ E sin4

MɆȺɄɋ sin4,

(3.101)

 

 

 

 

 

 

 

 

 

 

 

 

Ȧ0 xɋ

 

ɝɞɟ MɆȺɄɋ

3 UɎ E

– ɦɚɤɫɢɦɚɥɶɧɵɣ ɦɨɦɟɧɬ ɋȾ.

 

 

 

 

 

 

Ȧ

0

x

 

 

 

 

 

ɋ

 

 

 

 

 

 

 

 

 

 

 

ɂɡ ɜɵɪɚɠɟɧɢɹ (3.101)

ɜɢɞɧɨ, ɱɬɨ ɦɨ-

Aɦɟɧɬ ɋȾ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɫɢɧɭɫɨɢ-

 

I1xC

ɞɚɥɶɧɭɸ ɮɭɧɤɰɢɸ ɭɝɥɚ Ĭ ɦɚɲɢɧɵ. ɗɬɨ

U1

ij – Ĭ

ɜɵɪɚɠɟɧɢɟ ɫɩɪɚɜɟɞɥɢɜɨ ɬɨɥɶɤɨ ɞɥɹ ɦɚ-

ɲɢɧ ɛɨɥɶɲɨɣ ɦɨɳɧɨɫɬɢ.

 

 

B

ɑɬɨɛɵ ɩɨɥɭɱɢɬɶ ɜɵɪɚɠɟɧɢɟ ɞɥɹ ɹɜɧɨ-

 

 

ɩɨɥɸɫɧɨɣ ɦɚɲɢɧɵ, ɧɟɨɛɯɨɞɢɦɨ ɭɱɟɫɬɶ

 

C

 

Ĭ

 

ɪɟɚɤɬɢɜɧɵɣ ɦɨɦɟɧɬ, ɜɵɡɵɜɚɟɦɵɣ ɫɬɪɟɦ-

 

 

 

 

E1

 

ɥɟɧɢɟɦ ɦɚɝɧɢɬɧɨɝɨ ɩɨɬɨɤɚ ɡɚɦɤɧɭɬɶɫɹ ɩɨ

 

 

 

ɩɭɬɢ ɧɚɢɦɟɧɶɲɟɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ (ɪɢɫ.

ij

 

 

3.84). ɉɪɢ ɨɬɫɬɚɜɚɧɢɢ ɩɨɥɸɫɚ ɨɬ ɨɫɢ ɩɨɬɨ-

 

 

 

 

 

 

ɤɚ ɩɨɫɥɟɞɧɢɣ ɫɬɪɟɦɢɬɫɹ ɜɵɩɪɹɦɢɬɶɫɹ, ɢ

 

I1

 

ɷɬɨ ɫɬɪɟɦɥɟɧɢɟ ɩɨɪɨɠɞɚɟɬ ɞɨɩɨɥɧɢɬɟɥɶ-

 

 

 

ɧɵɣ ɦɨɦɟɧɬ ɦɚɲɢɧɵ ɆɊȿȺɄɌ.

Ɋɢɫ. 3.83. ȼɟɤɬɨɪɧɚɹ

 

ɉɨɷɬɨɦɭ ɞɥɹ ɹɜɧɨɩɨɥɸɫɧɨɣ ɦɚɲɢɧɵ

ɞɢɚɝɪɚɦɦɚ ɋȾ ɩɪɢ r1=0

 

ɜɵɪɚɠɟɧɢɟ (3.101) ɡɚɦɟɧɢɬɫɹ ɧɚ ɜɵɪɚɠɟ-

 

 

 

ɧɢɟ (3.102).

158

 

3

UɎ E

 

3

UɎ2

§

1

 

1

·

 

 

M

 

 

sin(4)

 

 

¨

 

 

 

¸

sin(2 4),

 

 

 

 

 

 

 

 

 

Ȧ0 x1d

 

2

Ȧ0

¨

 

 

x1d

¸

 

(3.102)

 

 

© x1q

 

¹

 

 

 

 

 

 

 

 

MɊȿȺɄɌɂȼɇɕɃ

ɝɞɟ ɯ1q – ɢɧɞɭɤɬɢɜɧɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɩɨ ɩɪɨɞɨɥɶɧɨɣ ɨɫɢ ɞɜɢɝɚɬɟɥɹ; ɯ1d – ɢɧɞɭɤɬɢɜɧɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɩɨ ɩɨɩɟɪɟɱɧɨɣ ɨɫɢ.

ɇɚ ɪɢɫ. 3.85 ɩɨɤɚɡɚɧɚ ɭɝɥɨɜɚɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ ɹɜɧɨɩɨɥɸɫɧɨɝɨ ɋȾ. ɉɪɢ ɪɚɛɨɬɟ ɫ Ĭ > 90ɨ ɭɜɟɥɢɱɟɧɢɟ ɧɚɝɪɭɡɤɢ ɩɪɢɜɨɞɢɬ ɤ ɫɧɢɠɟɧɢɸ ɦɨɦɟɧɬɚ ɞɜɢɝɚɬɟɥɹ, ɩɨɹɜɥɟɧɢɸ ɨɬɪɢɰɚɬɟɥɶɧɨɝɨ ɆȾɂɇ, ɱɬɨ ɩɪɢɜɨɞɢɬ ɤ ɫɧɢɠɟɧɢɸ ɫɤɨɪɨɫɬɢ ɞɜɢɝɚɬɟɥɹ ɢ, ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɋȾ ɜɵɩɚɞɚɟɬ ɢɡ ɫɢɧɯɪɨɧɢɡɦɚ.

N

 

 

Ɇ

 

 

MɆȺɄɋ

 

 

 

 

 

 

ɆɋɂɇɊȿȺɄɌ

 

 

 

 

 

ɆɊȿȺɄɌ

 

 

 

 

 

 

Ɇ

 

 

 

Ɇɋɂɇ

 

 

ɇ

 

 

 

S

 

 

 

 

ɆɊȿȺɄɌ

 

 

0

 

 

ș

 

 

 

ʌ/2

 

 

 

 

 

ʌ

 

 

 

șɇɈɆ

 

Ɋɢɫ. 3.84. Ⱦɟɣɫɬɜɢɟ

Ɋɢɫ. 3.85. ɍɝɥɨɜɚɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ

ɪɟɚɤɬɢɜɧɨɝɨ ɦɨɦɟɧɬɚ

 

 

ɹɜɧɨɩɨɥɸɫɧɨɝɨ ɋȾ.

3.6.3. ȼɥɢɹɧɢɟ ɩɚɪɚɦɟɬɪɨɜ ɷɥɟɤɬɪɨɩɪɢɜɨɞɚ

ɧɚ ɜɢɞ ɦɟɯɚɧɢɱɟɫɤɢɯ ɢ ɭɝɥɨɜɵɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ

ȼɵɪɚɠɟɧɢɟ ɭɝɥɨɜɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɋȾ (3.102)

 

3

UɎ E

 

3

UɎ2

§

1

 

1

·

 

M

 

 

sin(4)

 

 

¨

 

 

 

¸

sin(2 4)

 

 

 

 

 

 

 

Ȧ0 x1d

 

2 Ȧ0

¨

 

 

x1d

¸

 

 

 

© x1q

 

¹

 

 

 

 

 

 

 

MɊȿȺɄɌɂȼɇɕɃ

ɩɪɢ ɜɵɞɟɥɟɧɢɢ ɬɨɥɶɤɨ ɪɟɝɭɥɢɪɭɟɦɵɯ ɩɚɪɚɦɟɬɪɨɜ ɦɨɠɧɨ ɩɪɟɞɫɬɚɜɢɬɶ ɜ ɜɢɞɟ

MA UɎf1 Iȼ sin4 B §¨¨©Uf11 ·¸¸¹2 sin 2 4 ,

ɝɞɟ Ⱥ ɢ ȼ – ɩɨɫɬɨɹɧɧɵɟ ɜɟɥɢɱɢɧɵ.

Ⱦɥɹ ɧɟɹɜɧɨɩɨɥɸɫɧɨɝɨ ɞɜɢɝɚɬɟɥɹ (ɜɬɨɪɨɣ ɱɥɟɧ ɨɬɫɭɬɫɬɜɭɟɬ)

M A UɎ Iȼ sin4.

f1

159

ɂɡ ɩɪɢɜɟɞɟɧɧɨɝɨ ɜɵɪɚɠɟɧɢɹ ɫɥɟɞɭɟɬ, ɱɬɨ ɦɚɤɫɢɦɚɥɶɧɵɣ ɦɨɦɟɧɬ ɞɜɢɝɚɬɟɥɹ ɡɚɜɢɫɢɬ ɨɬ ɧɚɩɪɹɠɟɧɢɹ ɢ ɱɚɫɬɨɬɵ ɩɢɬɚɸɳɟɣ ɫɟɬɢ ɢ ɬɨɤɚ ɜɨɡɛɭɠɞɟɧɢɹ. ɍɜɟɥɢɱɟɧɢɟ ɧɚɩɪɹɠɟɧɢɹ ɫɟɬɢ U1, ɬɨɤɚ Iȼ ɢ ɭɦɟɧɶɲɟɧɢɟ ɱɚɫɬɨɬɵ ɫɟɬɢ f1 ɩɪɢɜɨɞɢɬ ɤ ɭɜɟɥɢɱɟɧɢɸ ɦɚɤɫɢɦɚɥɶɧɨɝɨ ɦɨɦɟɧɬɚ ɆɆȺɄɋ (ɪɢɫ. 3.86). ɇɚ ɫɤɨɪɨɫɬɶ ɋȾ ɜɥɢɹɟɬ ɬɨɥɶɤɨ ɱɚɫɬɨɬɚ ɫɟɬɢ.

 

 

 

 

U1=var

Ɇ

U1Ĺ,IȼĹ,f1Ļ

 

 

 

 

Ȧ

IB=var

 

 

 

 

MMAX

 

 

Ȧ0

 

 

 

 

Ɇɇ

U1Ļ,IȼĻ,f1Ĺ f1=var

 

 

 

ș

 

M

0 șɇ ʌ/2

 

 

 

ʌ

MMAX1

MMAX3

 

 

 

 

 

 

 

MMAX2

Ɋɢɫ.3.86. ɍɝɥɨɜɵɟ ɢ ɦɟɯɚɧɢɱɟɫɤɢɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɋȾ

ɉɪɢ ɩɨɫɬɨɹɧɫɬɜɟ ɫɤɨɪɨɫɬɢ ɜɪɚɳɟɧɢɹ ɞɜɢɝɚɬɟɥɹ ɪɟɝɭɥɢɪɨɜɚɧɢɟ ɧɚɩɪɹɠɟɧɢɹ ɢ ɬɨɤɚ ɜɨɡɛɭɠɞɟɧɢɹ ɩɪɢɜɨɞɢɬ ɤ ɨɝɪɚɧɢɱɟɧɢɸ ɆɆȺɄɋ. ɇɚ ɪɢɫ. 3.86 ɩɨɤɚɡɚɧɵ ɦɟɯɚɧɢɱɟɫɤɢɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ. ɉɪɢ ɪɟɝɭɥɢɪɨɜɚɧɢɢ ɱɚɫɬɨɬɵ ɩɪɨɢɫɯɨɞɢɬ ɢɡɦɟɧɟɧɢɟ ɫɤɨɪɨɫɬɢ, ɚ ɨɝɪɚɧɢɱɟɧɢɟ ɦɚɤɫɢɦɚɥɶɧɨɝɨ ɦɨɦɟɧɬɚ ɧɚ ɤɚɠɞɨɣ ɢɡ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɪɚɡɥɢɱɧɨ.

Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɥɟɝɤɨ ɭɩɪɚɜɥɹɬɶ ɜɟɥɢɱɢɧɨɣ ɦɨɦɟɧɬɚ, ɢɡɦɟɧɹɹ ɬɨɤ ɜɨɡɛɭɠɞɟɧɢɹ. ɗɬɢɦ ɩɨɥɶɡɭɸɬɫɹ ɩɪɢ ɩɭɫɤɟ ɢ ɩɪɢ ɪɟɡɤɨɦ ɧɚɛɪɨɫɟ ɧɚɝɪɭɡɤɢ, ɩɪɢɦɟɧɹɹ ɜ ɷɬɢɯ ɪɟɠɢɦɚɯ ɭɜɟɥɢɱɟɧɢɟ ɬɨɤɚ ɜɨɡɛɭɠɞɟɧɢɹ (ɮɨɪɫɢɪɨɜɤɭ ɜɨɡɛɭɠɞɟɧɢɹ).

3.6.4. ɍɩɪɨɳɟɧɧɚɹ ɫɬɪɭɤɬɭɪɧɚɹ ɫɯɟɦɚ ɋȾ

 

 

 

 

 

ɇɚ ɪɢɫ. 3.87 ɢɡɨɛɪɚɠɟɧɚ ɭɝɥɨɜɚɹ ɯɚɪɚɤɬɟ-

Ɇ

 

 

 

ɪɢɫɬɢɤɚ ɋȾ. Ⱦɥɹ ɫɨɫɬɚɜɥɟɧɢɹ ɭɩɪɨɳɟɧɧɨɣ

MMAX

 

 

 

 

 

 

 

ɫɬɪɭɤɬɭɪɧɨɣ ɫɯɟɦɵ ɥɢɧɟɚɪɢɡɢɪɭɟɦ ɪɚɛɨɱɢɣ

 

 

 

 

ɭɱɚɫɬɨɤ ɢ

ɡɚɩɢɲɟɦ

ɭɪɚɜɧɟɧɢɟ

ɩɨɥɭɱɟɧɧɨɣ

Ɇɇ

 

 

 

ɩɪɹɦɨɣ Ɇ=f(ș) ɫ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɧɚɤɥɨɧɚ b:

 

 

 

 

 

Ĭ

 

 

Mɋɂɇ

 

MɇɈɆ

4

b 4.

(3.103)

0 Ĭɇ ʌ/2

 

 

 

 

ʌ

 

 

 

 

4ɇɈɆ

 

 

Ɋɢɫ. 3.87. Ɉɩɪɟɞɟɥɟɧɢɟ b

 

 

ɉɪɨɞɢɮɮɟɪɟɧɰɢɪɭɟɦ ɨɛɟ ɱɚɫɬɢ ɭɪɚɜɧɟ-

 

 

 

 

ɧɢɹ (3.103) ɩɨ dt

 

 

 

ɋɂɇ

 

b

d4

b Ȧ0 Ȧ .

 

(3.104)

 

dt

 

 

 

 

dt

 

 

 

 

 

160

Соседние файлы в папке EP