Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Зуб М.Д. Тема 6. Анализ количественной маркетинговой информации.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
222.88 Кб
Скачать

Виды дисперсионного анализа:

  1. Одномерный дисперсионный анализ - вид дисперсионного анализа, при помощи которого исследуется влияние одной или нескольких независимых переменных на одну зависимую переменную (ANOVA: Analysis of Variance).

Он включает в себя:

  • однофакторный дисперсионный анализ – вид дисперсионного анализа, при помощи которого исследуется влияние одной независимой переменной, имеющей несколько уровней, на одну зависимую переменную. Пример постановки вопросов однофакторного дисперсионного анализа: какой из трех (или более) рекламных роликов имеет лучшую запоминаемость? Влияет ли тип рекламы (плакаты, реклама по радио и др.) на число посетителей в кинотеатре?

  • многофакторный дисперсионный анализ – вид дисперсионного анализа, при помощи которого исследуется влияние нескольких (двух и более) независимых переменных, каждая из которых имеет несколько уровней, на одну зависимую переменную.

Пример постановки вопросов двухфакторного дисперсионного анализа: влияет ли на выбор потребителя уровень образования (высшее, среднее, неполное среднее) и возраст?

Как осведомленность о магазине (высокая, средняя, низкая) и представление о нем (позитивное, нейтральное, негативное) влияют на предпочтения потребителей?

Пример постановки вопроса трехфакторного дисперсионного анализа: как меняется намерение потребителей купить товар при различных уровнях цен, каналах распределения и интенсивности рекламной кампании?

Главным преимуществом многофакторного дисперсионного анализа является возможность исследовать эффект взаимодействия факторов. Взаимодействие имеет тогда, когда эффект одного фактора на зависимую переменную зависит от уровня других факторов. Например, многофакторный дисперсионный анализ позволяет ответить на вопрос: усиливают ли друг друга реклама по радио и мероприятия прямого маркетинга, проводимые в торговом центре?

  1. Многомерный дисперсионный анализ - вид дисперсионного анализа, при помощи которого исследуется влияние нескольких независимых переменных на несколько зависимых переменных (МANOVA: Multiple Analysis of Variance). Например: как интенсивность рекламы (высокая, средняя, низкая) и уровень цены (высокий, средний, низкий) одновременно влияют на объем продаж и имидж магазина?

В основе техники проведения дисперсионного анализа лежит разложение полной дисперсии зависимой переменной Х на составляющие: межгрупповую (факторную), обусловленную воздействием фактора на зависимую переменную, и внутригрупповую (остаточную), обусловленную случайными причинами. Чем больше частное от деления межгрупповой и внутригрупповой дисперсий (F-отношение) тем больше различаются средние значения сравниваемых выборок и тем выше статистическая значимость этого различия.

  1. Корреляционный и регрессионный анализ.

Анализ и обобщение данных маркетинговых исследований осуществляется методами ручной или компьютерной обработки. Для обработки используются как описательные, так и аналитические методы. Среди аналитических методов в маркетинговых исследованиях в основном применяются: анализ трендов, методы нелинейной регрессии и коррекции, дискриминантный анализ, кластерный анализ, факторный анализ и др.

Рассматривая зависимости между признаками, необходимо выделить прежде всего две категории зависимости: функциональные и корреляционные.

Функциональные связи характеризуются полным соответствием между изменением факторного признака и изменением результативной величины, и каждому значению признака-фактора соответствуют вполне определенные значения результативного признака.

В корреляционных связях между изменением факторного и результативного признака нет полного соответствия, воздействие отдельных факторов проявляется лишь в среднем при массовом наблюдении фактических данных. В простейшем случае применения корреляционной зависимости величина результативного признака рассматривается как следствие изменения только одного фактора (например, рекламный бюджет — как причина роста объема продаж).

Корреляционный анализ дает возможность рассчитывать уровень доверия к результатам анализа. В процессе этого анализа рассчитываются показатели корреляции, к которым относятся коэффициенты корреляции и корреляционные отношения.

При сравнении функциональных и корреляционных зависимостей следует иметь в виду, что при наличии функциональной зависимости между признаками можно, зная величину факторного признака, точно определить величину результативного признака. При наличии же корреляционной зависимости устанавливается лишь тенденция изменения результативного признака при изменении величины факторного признака. В отличие от жесткости функциональной связи корреляционные связи характеризуются множеством причин и следствий и устанавливаются лишь их тенденции.

Простейшим приемом обнаружения связи является сопоставление двух параллельных рядов. Из общего анализа видно, что увеличение количества промоакций способствует увеличению объема продаж.

Характер распределения указывает на то, что объем сбыта растет по мере увеличения количества промоакций. Следовательно, имеется положительная связь между факторами.

Регрессионный анализ даст возможность ответить на вопрос о количественной мере влияния различных факторов, например на спрос (объем возможной продажи). Он представляет собой подбор и решение математических уравнений, описывающих исследуемые зависимости. Элементы рынка зависят от многих факторов, и формы этих зависимостей могут быть самыми разнообразными. Поэтому регрессионный анализ начинают с построения графика зависимости, на его основе подбирают подходящее математическое уравнение, а затем находят параметры этого уравнения путем решения системы нормальных уравнений.

Регрессионный анализ используется для изучения связей между зависимой переменной и одной или несколькими независимыми переменными, определения тесноты связи и математической зависимости между ними, предсказания значения зависимой переменной.

Простейшей системой корреляционной связи является линейная связь между двумя признаками, или парная линейная корреляция. Уравнение парной линейной корреляционной связи называется уравнением парной регрессии:

где   — среднее значение результативного признака у при определенном значении факторного признака х; а — свободный член уравнения; b — коэффициент регрессии, измеряющий среднее отношение отклонения результативного признака от его средней величины к отклонению факторного признака от его средней величины на одну единицу его измерения, — вариация у,приходящаяся на единицу вариации х.

Регрессионный анализ - статистический метод установления зависимости между независимыми и зависимыми переменными. Регрессионный анализ на основе построенного уравнения регрессии определяет вклад каждой независимой переменной в изменение изучаемой (прогнозируемой) зависимой переменной величины. В маркетинге часто используется для прогнозирования спроса.