- •2. Диаграмма "σb —εb" бетона при кратковременном и длительном нагружении. Начальный модуль упругости бетона Еb, начальный модуль деформаций бетона Еb,τ. Предельные деформации бетона.
- •3. Усадка и набухание бетона. Факторы, влияющие на величину усадки. Пути снижения усадочных деформаций.
- •6) Арматурные изделия: сварные сетки. Изделия из холоднодеформированной арматуры. Соединения арматуры. Области применения арматуры различных классов.
- •Преимущества механической стыковки
- •7) Совместная работа арматуры и бетона, их сцепление в железобетонных конструкциях. Факторы от которых зависит величина сцепления. Защитный слой бетона.
- •8) Усадка бетона в железобетонных конструкциях. Параметры влияющие на величину собственных напряжений в бетоне при усадке железобетона. Позитивные и негативные последствия усадки в конструкциях.
- •10. Назначение величины предварительного напряжения арматуры. Длина зоны передачи предварительного напряжения на бетон. Потери предварительного напряжения арматуры. Сп 52-102-2004
- •13. Нормативные и расчетные сопротивления арматуры. Коэффициенты надежности и условий работы арматуры. Основные положения расчета конструкций по предельным состояниям.
- •1. Б) Если нейтральная плоскость проходит в ребре балки (рисунок 326.1.Б), то расчет выполняется, исходя из следующего условия:
- •20. Принципы расчета и конструирования многопустотных панелей перекрытия. Принципы расчета и конструирования ребристых панелей перекрытия. Конструирование ригелей сборных перекрытий.
- •21. Принципы расчета и конструирования отдельно стоящих центральнонагруженных фундаментов под сборные железобетонные колонны.
- •22. Принципы расчета и конструирования отдельно стоящих центральнонагруженных фундаментов под сборные железобетонные колонны.
- •23. Понятие о пластическом шарнире. Перераспределение усилий в статически неопределимых железобетонных конструкциях. Расчет конструкций методом предельного равновесия.
- •24. Монолитные ребристые перекрытия с балочными плитами: элементы, компоновка и назначение основных размеров. Принципы расчета и конструирования балочной плиты монолитного ребристого перекрытия.
- •25. Принципы расчета и конструирования второстепенной балки монолитного ребристого перекрытия. Принципы расчета и конструирования главной балки монолитного ребристого перекрытия.
- •26. Каменные и армокаменные конструкции: области применения, достоинства и недостатки. Материалы для каменных конструкций. Прочность и деформативность каменной кладки. Сп 15.13330.2012
- •27. Расчёт по прочности центрально сжатых каменных элементов. Армокаменные конструкции. Виды армирования каменной кладки и принципы расчёта центрально сжатых элементов с сетчатым армированием.
10. Назначение величины предварительного напряжения арматуры. Длина зоны передачи предварительного напряжения на бетон. Потери предварительного напряжения арматуры. Сп 52-102-2004
2.2.3.1 Предварительные напряжения арматуры σsp принимают не более 0,9Rs,n для горячекатаной и термомеханически упрочненной арматуры и не более 0,8 Rs,n для холоднодеформированной арматуры и арматурных канатов.
2.2.3.2 При расчете предварительно напряженных конструкций следует учитывать снижение предварительных напряжений вследствие потерь предварительного напряжения до передачи усилий натяжения на бетон (первые потери) и после передачи усилия натяжения на бетон (вторые потери).
Первые потери предварительного напряжения включают потери от релаксации предварительных напряжений в арматуре, потери от температурного перепада при термической обработке конструкций, потери от деформации анкеров и деформации формы (упоров).
Вторые потери предварительного напряжения включают потери от усадки и ползучести бетона.
2.2.3.3 Потери от релаксации напряжений арматуры Δσsp1, определяют по формулам:
для арматуры классов А600 - А1000 при способе натяжения:
механическом - Δσsp1 = 0,lσsp - 2,0; (17)
электротермическом - Δσsp1 = 0,03σsp; (18)
для арматуры классов Вр1200 - Вр1500, К1400, К1500 при способе натяжения:
механическом
-
; (19)
электротермическом - Δσsp1 = 0,5σsp. (20)
Здесь σsp принимается без потерь в МПа.
При отрицательных значениях Δσsp1 принимают Δσsp1 = 0.
При наличии более точных данных о релаксации арматуры допускается принимать иные значения потерь от релаксации.
2.2.3.4 Потери Δσsp2 (МПа) от температурного перепада Δt (°C), определяемого как разность температур натянутой арматуры в зоне нагрева и устройства, воспринимающего усилия натяжения при нагреве бетона, принимают равными:
Δσsp2 = 1,25 Δt. (21)
При отсутствии точных данных по температурному перепаду допускается принимать Δt = 65 °С.
При наличии более точных данных о температурной обработке конструкции допускается принимать иные значения потерь от температурного перепада.
2.2.3.5 Потери от деформации стальной формы (упоров) Δσsp3 при неодновременном натяжении арматуры на форму определяют по формуле
, (22)
где п - число стержней (групп стержней), натягиваемых неодновременно;
Δl - сближение упоров по линии действия усилия натяжения арматуры, определяемое из расчета деформации формы;
l - расстояние между наружными гранями упоров.
При отсутствии данных о конструкции формы и технологии изготовления допускается принимать Δσsp3 = 30 МПа.
При электротермическом способе натяжения арматуры потери от деформации формы не учитываются.
2.2.3.6 Потери от деформации анкеров натяжных устройств Δσsp4 определяют по формуле
, (23)
где Δl - обжатие анкеров или смещение стержня в зажимах анкеров;
l - расстояние между наружными гранями упоров.
При отсутствии данных допускается принимать Δl = 2 мм.
При электротермическом способе натяжения арматуры потери от деформации анкеров не учитывают.
2.2.3.7 Потери от усадки бетона Δσsp5 определяют по формуле
Δσsp5 = εb,sh Es, (24)
где εb,sh - деформации усадки бетона, значения которых можно приближенно принимать в зависимости от класса бетона равными:
0,0002 - для бетона классов В35 и ниже;
0,00025 - для бетона класса В40;
0,0003 - для бетона классов В45 и выше.
Допускается потери от усадки бетона определять более точными методами.
2.2.3.8 Потери от ползучести бетона Δσsp6 определяют по формуле
, (25)
где φb,cr - коэффициент ползучести бетона, определяемый согласно п. 2.1.2.7;
σbpj - напряжения в бетоне на уровне центра тяжести рассматриваемой j-й группы стержней напрягаемой арматуры;
ysj - расстояние между центрами тяжести сечения рассматриваемой группы стержней напрягаемой арматуры и приведенного поперечного сечения элемента;
Ared, Ired - площадь приведенного сечения элемента и ее момент инерции относительно центра тяжести приведенного сечения;
μspj - коэффициент армирования, равный Aspj / А, где А и Aspj - площади поперечного сечения соответственно элемента и рассматриваемой группы стержней напрягаемой арматуры.
Допускается потери от ползучести бетона определять более точными методами.
Напряжения σbpj определяют
по правилам расчета упругих материалов,
принимая приведенное сечение элемента,
включающее площадь сечения бетона и
площадь сечения всей продольной арматуры
(напрягаемой и ненапрягаемой) с
коэффициентом приведения арматуры к
бетону
согласно п.
2.2.3.10.
2.2.3.9 Полные значения первых потерь предварительного напряжения арматуры (по пп. 2.2.3.3-2.2.3.6) определяют по формуле
, (26)
где i - номер потерь предварительного напряжения.
Усилие предварительного обжатия бетона с учетом первых потерь равно:
, (27)
где Aspj и σsp(1)j - площадь сечения j-й группы стержней напрягаемой арматуры в сечении элемента и предварительное напряжение в группе с учетом первых потерь
σsp(1)j = σspj - Δσsp(1)j.
Здесь σspj - начальное предварительное напряжение рассматриваемой группы стержней арматуры.
Полные значения первых и вторых потерь предварительного напряжения арматуры (по пп. 2.2.3.3-2.2.3.8) определяют по формуле
. (28)
Усилие в напрягаемой арматуре с учетом полных потерь равно:
, (29)
где σsp(2)j = σspj - Δσsp(2)j.
При проектировании конструкций полные суммарные потери Δσsp(2)j для арматуры, расположенной в растянутой при эксплуатации зоне сечения элемента, следует принимать не менее 100 МПа.
При определении усилия предварительного обжатия бетона Р с учетом полных потерь напряжений следует учитывать сжимающие напряжения в ненапрягаемой арматуре, численно равные сумме потерь от усадки и ползучести бетона на уровне этой арматуры.
2.2.3.10 Предварительные напряжения в бетоне σbp при передаче усилия предварительного обжатия Р(1), определяемого с учетом первых потерь, не должны превышать: если напряжения уменьшаются или не изменяются при действии внешних нагрузок - 0,9Rbp; если напряжения увеличиваются при действии внешних нагрузок - 0,7Rbp.
Напряжения в бетоне σbp определяют по формуле
, (30)
где Р(1) - усилие предварительного обжатия с учетом первых потерь;
М - изгибающий момент от внешней нагрузки, действующей в стадии обжатия (собственный вес элемента);
e0p - эксцентриситет усилия Р(1) относительно центра тяжести приведенного поперечного сечения элемента;
у - расстояние от центра тяжести приведенного сечения до рассматриваемого волокна.
2.2.3.11 Длину зоны передачи предварительного напряжения на бетон для арматуры без дополнительных анкерующих устройств определяют по формуле
, (31)
но не менее 10ds и 200 мм, а для арматурных канатов - также не менее 300 мм.
В формуле (31):
σsp - предварительное напряжение в напрягаемой арматуре с учетом первых потерь;
Rbond - сопротивление сцепления напрягаемой арматуры с бетоном, отвечающее передаточной прочности бетона и определяемое согласно п. 5.3;
As, us - площадь и периметр стержня арматуры.
Передачу предварительного напряжения с арматуры на бетон рекомендуется осуществлять плавно.
11. Расчет железобетонных конструкций по методу предельных состояний. Понятие предельного состояния, две группы предельных состояний. Основные предпосылки и цели расчета конструкций по первой и второй группам предельных состояний. (Привести примеры предельных состояний).
пособие по проектированию бет. и жб. констр. из тяжелого бетона без предварительного напряжения арматуры (к сп 52-101-2003)
С
амо
название «предельное
состояние»
обозначает, что для любой конструкции
при определенных условиях наступает
такое состояние, при котором исчерпывается
какой-то определенный предел. Условно,
вывели два: первое
пред. сост.
– это когда исчерпывается предел
прочности, устойчивости и выносливости
конструкции; второе
пред. сост.
– когда деформации конструкции превышают
предельно допустимые (ко второму
предельному состоянию для железобетона
также относят ограничение по возникновению
и раскрытию трещин).
Существуют также:
аварийное предельное состояние, соответствующее разрушению сооружений при аварийных воздействиях и ситуациях с катастрофическими последствиями;
устанавливаемые в нормах или заданиях на проектирование другие предельные состояния, затрудняющие нормальную эксплуатацию строительных объектов.
Любой расчет начинается со сбора нагрузки. Затем следует выбор расчетной схемы и непосредственно расчет, в результате которого мы определяем усилия в конструкции: моменты, продольные и поперечные силы. И только после того, как усилия определены, мы переходим к расчетам по первому и второму предельному состоянию. Обычно они выполняются именно в такой последовательности: сначала по первому, потом по второму. Хотя бывают исключения.
Расчет по предельным состояниям первой группы выполняют, чтобы предотвратить: -хрупкое, вязкое или иного характера разрушение (расчет по прочности с учетом в необходимых случаях прогиба конструкции перед разрушением);
-потерю устойчивости формы конструкции (расчет на устойчивость тонкостенных конструкций и т. п.) или ее положения (расчет на опрокидывание и скольжение подпорных стен, внецентренно нагруженных высоких фундаментов; расчет на всплытие заглубленных или подземных резервуаров и т. п.);
-усталостное разрушение (расчет на выносливость конструкций, находящихся под воздействием многократно повторяющейся нагрузки подвижной или пульсирующей: подкрановых балок, шпал, рамных фундаментов и перекрытий под неуравновешенные машины и т.п.);
-разрушение от совместного воздействия силовых факторов и неблагоприятных влияний внешней среды (периодического или постоянного воздействия агрессивной среды, действия попеременного замораживания и оттаивания и т. п.).
Расчет по предельным состояниям второй группы выполняют, чтобы предотвратить:
-образование чрезмерного или продолжительного раскрытия трещин (если по условиям эксплуатации образование или продолжительное раскрытие трещин допустимо);
-чрезмерные перемещения (прогибы, углы поворота, углы перекоса и амплитуды колебаний).
Расчет по предельным состояниям конструкции в целом, а также отдельных ее элементов или частей производится для всех этапов: изготовления, транспортирования, монтажа и эксплуатации; при этом расчетные схемы должны отвечать принятым конструктивным решениям и каждому из перечисленных этапов.
12. Нагрузки, действующие на здания и сооружения. Нормативные и расчетные нагрузки, сочетания нагрузок. Учёт ответственности зданий и сооружений. Нормативные и расчетные сопротивления бетона. Коэффициенты надежности и условий работы бетона. СП 20.13330.2011 Нагрузки и воздействия. Коэффициент надежности по нагрузке: Коэффициент, учитывающий в условиях нормальной эксплуатации сооружений возможное отклонение нагрузок в неблагоприятную (большую или меньшую) сторону от нормативных значений; коэффициент сочетаний нагрузок: Коэффициент, учитывающий уменьшение вероятности одновременного достижения несколькими нагрузками их расчетных значений; нагрузки: Внешние механические силы (вес конструкций, оборудования, снегоотложений, людей и т.п.), действующие на строительные объекты; нагрузки длительные: Нагрузки, изменения расчетных значений которых в течение расчетного срока службы строительного объекта пренебрежимо малы по сравнению с их средними значениями; нагрузки кратковременные: Нагрузки, длительность действия расчетных значений которых существенно меньше срока службы сооружения; нормативное (базовое) значение нагрузок: Основная базовая характеристика, устанавливаемая соответствующими нормами проектирования, техническими условиями или заданием на проектирование; особые нагрузки: Нагрузки и воздействия (например, взрыв, столкновение с транспортными средствами, авария оборудования, пожар, землетрясение и отказ работы несущего элемента конструкций), создающие аварийные ситуации с возможными катастрофическими последствиями; расчетное значение нагрузки: Предельное (максимальное или минимальное) значение нагрузки в течение срока эксплуатации объекта; расчетные сочетания нагрузок: Все возможные неблагоприятные комбинации нагрузок, которые необходимо учитывать при проектировании объекта.
Основными характеристиками нагрузок, являются их нормативные (базовые) значения. При необходимости учета влияния длительности нагрузок, при проверке на выносливость и в других случаях, оговоренных в нормах проектирования конструкций и оснований; устанавливаются пониженные нормативные значения нагрузок от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий, от мостовых и подвесных кранов, снеговых, температурных климатических воздействий.; Расчетное значение нагрузки следует определять как произведение ее нормативного значения на коэффициент надежности по нагрузке.
Для зданий и сооружений повышенного уровня ответственности дополнительные требования к нагрузкам и воздействиям на строительные конструкции и основания необходимо устанавливать в соответствующих нормативных документах, технических заданиях на проектирование с учетом рекомендаций, разработанных специализированными организациями.
Нормативные сопротивления бетона – это сопротивление осевому сжатию бетонных призм (призменная прочность) Rbn и сопротивление осевому растяжению Rbtn, которые определяются в зависимости от класса бетона по прочности (при обеспеченности 0,95).
Р
асчетные
сопротивления бетона получают путем
деления нормативных сопротивлений на
соответствующие коэффициенты надежности
по материалу:
-
расчетное сопротивление бетона осевому
сжатию, где
-
коэффициент надежности по бетону при
сжатии, зависящий от вида бетона.
-
расчетное сопротивление бетона осевому
растяжению, где
-
коэффициент надежности по бетону при
растяжении, зависящий от вида бетона.
При расчете элементов конструкций расчетные сопротивления бетона Rb и Rbt в отдельных случаях уменьшают или увеличивают умножением на соответствующие коэффициенты условия работы бетона γbi, которые учитывают следующие факторы: длительность действия нагрузки; многократную повторяемость нагрузки; условия, характер и стадию работы конструкции; способ ее изготовления; размеры сечения и т.д.
4 группы коэффициентов надежности: степень ответственности зданий и сооружений, нагрузки и воздействия, сопротивление материалов, условия изготовления и эксплуатации конструкций
