Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОБЩАЯ ФИЗИОЛОГИЯ-5_ДЫХАНИЕ_Обмен_2011.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.51 Mб
Скачать

Параметры паттерна дыхания:

- количество дыхательных цик­лов в 1 минуту (частота дыхания - ЧД);

- длительность отдельного дыхатель­ного циклат) - величина, обратная частоте дыхания;

- длительность вдоха и выдоха - инспираторной и экспираторной фаз (ТI и Те);

- дыхательный объем (ДО) или глубина дыхания (ГД);

- легочная вентиляция (ЛВ), обычно обозна­чаемая как минутный объем дыхания (МОД). Он может быть рассчи­тан как произведение частоты дыхания (ЧД) на величину дыхательного объ­ема: МОД=ДОхЧД

Индивидуально паттерн дыхания различается весьма существенно. Так, по количеству дыхательных циклов в одну минуту, которое считается нормальным в диапазоне от 12 до 16 дыхательных циклов, выделяют:

- тахипноический тип дыхания - тип с относительно частым и неглубоким дыханием, когда частота дыхания выше 20 циклов в минуту;

- брадипноический тип дыхания - тип с медленным и глубоким дыханием, когда частота дыхания ниже 8 циклов в минуту;

- нормопноический тип дыхания - промежуточный тип.

Для количественной оценки лёгочной вентиляции, важно знать, какие объёмы воздуха могут находиться в лёгких в зависимости от фазы и глубины дыхания (рис.8.5).

Рис. 8.5. Основные дыхательные объёмы и ёмкости.

Статические объёмы легких

1. Дыхательный объём (ДО) (400-500 мл) – объём воздуха, вдыхаемый и выдыхаемый при каждом дыхательном цикле.

2. Резервный объём вдоха (дополнительный воздух: 1900-3300 мл) – тот объём, который можно вдохнуть при максимальном вдохе после обычного вдоха.

3. Резервный объём выдоха (резервный воздух: 700-1000 мл)

4. Остаточный объём (1200 мл)

Ёмкости легких

1. Общая ёмкость лёгких (ОЕЛ) – количество воздуха находящееся в лёгких после максимального вдоха (4200-6000 мл)

2. Жизненная ёмкость лёгких (ЖЕЛ) (сумма первых 3-х дыхательных объёмов) – количество воздуха, которое выходит из лёгких при максимально глубоком выдохе, после максимально глубокого вдоха (3300-4800 мл).

3. Ёмкость вдоха (сумма первых 2-х объёмов) (3000 мл).

4. Функциональная остаточная ёмкость (ФОЕ) – сумма 2-х последних объёмов (2400 мл).

8.3. Механизм обмена газов в легких и тканях. Транспорт кислорода и углекислого газа.

Газообмен между альвеолярным воздухом и притекающей к легким венозной кровью — это совокупность процессов, обеспечивающих переход кислорода внешней среды в кровь, а углекислого газа из крови в альвеолы. Перемещение газов (легкие — кровь) осуществляется под влиянием разности парциальных давлений и напряжений этих газов в каждой из сред организма (табл.8.1).

Таблица 8.1.

Содержание и парциальное давление (напряжение) кислорода и углекислого газа в различных средах

Среда

Кислород

Углекислый газ

%

мм рт. ст.

мл/л

%

мм рт. ст.

мл/л

Вдыхаемый воздух

20,93

159

209,3

0,03

0,2

0,3

Выдыхаемый воздух

16,0

121

160,0

4,5

34

45

Альвеолярный воздух

14,0

100

140,0

5,5

40

55

Артериальная кровь

-

100-96

200,0

-

40

560-540

Венозная кровь

-

40

140-160

-

46

580

Ткань

-

10-15

-

-

60

-

Около митохондрий

-

01-1

-

-

70

-

Альвеолярный воздух осуществляет газообмен с притекающей к легким венозной кровью, являясь как бы внутренней газовой средой организма. Состав альвеолярного воздуха отличается постоянством, мало изменяясь при обычном дыхании. При спокойном дыхании в альвеолы с каждым вдохом взрослого человека поступает 350 мл воздуха, и альвеолярный воздух обновляется лишь на 1/7 своего объема (коэффициент вентиляции). При спокойном дыхании давление в альвеолах ниже атмосферного.

Решающим фактором, обусловливающим непрерывность газообмена, является постоянство газового состава альвеолярного воздуха.

Учитывая свойство газов диффундировать из области большего парциального давления в область с меньшим парциальным давлением, несложно понять направленность диффузии О2 и СО2 на том или ином уровне дыхания (рис.8.6).

Рис.8.6. Газообмен в легких.

Парциальное давление кислорода в воздухе, заполняющем альвеолы легких, около 106 мм рт. ст., а его напряжение в плазме венозной крови, притекающей к легким, около 40 мм рт.ст. Вследствие разности давлений кислород из альвеол направляется в плазму крови и далее в эритроциты, где его напряжение практически равно нулю. Там он связывается с гемоглобином эритроцитов.

Парциальное давление углекислого газа в альвеолярном воздухе составляет 40 мм рт.ст., а его напряжение в притекающей к легким венозной крови — 46 мм рт.ст. Вследствие разности давлений углекислый газ переходит в альвеолы.

В артериальной крови, притекающей к тканям, напряжение кислорода выше, чем в тканях, а напряжение углекислого газа наоборот значительно ниже. Оно составляет 60 мм рт.ст. в ткани и 40 мм рт.ст. в плазме крови. В эритроцитах напряжение углекислого газа практически равно нулю. Вследствие этого кислород переходит из крови в ткани и включается в цикл метаболических процессов, а углекислый газ, в избытке содержащийся в тканях, переходит в кровь и переносится затем в легкие.

Процесс газообмена происходит непрерывно до тех пор, пока существует разность парциальных давлений и напряжений газов в каждой из сред, участвующих в газообмене.

Величина газообмена является показателем интенсивности окислительных процессов, протекающих в тканях. Для оценки интенсивности газообмена определяют количество кислорода, использованного организмом за определенное время, и количество углекислого газа, выделенного организмом за это же время. Об уровне газообмена можно судить и по величине минутной вентиляции легких. При спокойном дыхании через легкие проходит около 8000 мл воздуха в 1 мин. При физических или эмоциональных напряжениях, различных заболеваниях, сопровождающихся усилением окислительных процессов в тканях, легочная вентиляция возрастает. Газообмен между тканями и кровью, кровью и легкими, легкими и внешней средой может в значительной степени нарушаться при различных заболеваниях легких, сердечно-сосудистой системы, крови. Следствием таких нарушений газообмена может явиться гипоксия — кислородное голодание тканей.

Газообмен в организме осуществляется двумя основными механизма­ми:

1. Конвективный, представляет собой механическое пе­редвижение молекул О2 и СО2 с током воздуха или крови. Таким образом, осуществляется перенос газов в воздухе или крови на большое расстояние.

2. Диффузия. Механизм газообмена между разными средами организма. Диффузия осуществляется из области с высоким парциальным давлением газов в область низкого их давления, причём на работу по переносу молекул затрачивается их собственная кинетическая энергия

В организме кислород и углекислый газ транспортируются кровью.

Кислород, поступающий из альвеолярного воздуха в кровь, связывается с гемоглобином эритроцитов, образуя так называемый оксигемоглобин, и в таком виде доставляется к тканям.

Количество кислорода, связанного гемоглобином в 100 мл крови, носит название кислородная ёмкость крови.

Известно, что каждый грамм гемоглобина связывает 1,34-1,35 мл О2. Следовательно, КЕК здорового мужчины, у которого в 100 мл крови содержится 15 г Hb, составляет 20,4 объёмных процента (табл.8.2).

Таблица 8.2. Количество гемоглобина и кислородная емкость крови

Гемоглобин

у мужчин

у женщин

14-15 гр% Нb (на 100 мл крови)

13,5-14,5 гр% Нb (на 100 мл крови)

Кислородная ёмкость крови КЕК)

в покое

при мышечной работе

20 об % О2 (1 гр. Нb связывает 1,34-1,35 мл О2)

увеличение на 5-10 %

В тканевых капиллярах кислород отщепляется и переходит в ткани, где включается в окислительные процессы. Свободный гемоглобин связывает водород и превращается в так называемый восстановленный гемоглобин. Углекислый газ, образующийся в тканях, переходит в кровь и поступает в эритроциты. Затем часть углекислого газа соединяется с восстановленным гемоглобином, образуя так называемый карбогемоглобин, и в таком виде углекислый газ и доставляется к легким. Однако большая часть углекислого газа в эритроцитах при участии фермента карбоангидразы превращается в бикарбонаты, которые переходят в плазму и транспортируются к легким. В легочных капиллярах бикарбонаты при помощи специального фермента карбоангидразы распадаются и выделяется углекислый газ. Отщепляется углекислый газ и от гемоглобина. Углекислый газ переходит в альвеолярный воздух и с выдыхаемым воздухом удаляется во внешнюю среду.

Следует знать, что более эффективно, чем углекислый газ с гемоглобином, связывается окись углерода известная как угарный газ. Образующийся в этом случае так называемый карбоксигемоглобин не способен связывать кислород.

Наконец, последним этапом дыхания является тканевое дыхание или окислительно-восстановительные реакции, протекающие в клетках организма. Существо этих реакций заключается в том, что сложные органические вещества окисляются при участии специальных ферментов кислородом до конечных продуктов в виде аммиака, воды и двуокиси углерода. Освобождающаяся при этом энергия выделяется частично в виде тепла, однако основная ее часть идет на образование известных всем молекул АТФ, которые являются источником энергии, необходимой для жизнедеятельности организма.

В тканевых капиллярах кислород отщепляется и переходит в ткани, где включается в окислительные процессы. Свободный гемоглобин связывает водород и превращается в так называемый восстановленный гемоглобин.