- •Содержание
- •Введение
- •1 Химическая термодинамика и химическое равновесие
- •1.1 Первое начало термодинамики
- •1.2 Расчет тепловых эффектов химических реакций
- •Второе начало термодинамики
- •1.4 Расчет изменения энтропии и энергии Гиббса в химических процессах
- •1.5 Термодинамический анализ возможности протекания химического процесса
- •1.6 Химическое равновесие
- •1.7 Расчет степени превращения исходных веществ, выхода продукта и равновесного состава химической реакции
- •1.8 Константы равновесия гетерогенных реакций
- •1.9 Многовариантное задание №1 «Расчет степени превращения, равновесного состава и выхода продукта химической реакции и выбор оптимальных условий проведения процесса»
- •1.10 Многовариантное задание №2 «Расчет равновесных парциальных давлений гетерогенной химической реакции»
- •1.11 Контрольные вопросы
- •2 Фазовые равновесия
- •2.1 Однокомпонентные системы
- •2.1.1 Многовариантное задание №3 «Анализ фазового равновесия жидкость – пар в однокомпонентной системе»
- •2.2 Двухкомпонентные системы
- •2.2.1 Идеальные и неидеальные растворы
- •2.2.1.1 Многовариантное задание №4 «Определение активности и коэффициента активности растворителя в растворе»
- •2.2.1.2 Многовариантное задание № 5 «Коллигативные свойства растворов»
- •2.2.2 Диаграммы состав - свойство для равновесия жидкость - пар
- •2.2.2.1 Многовариантное задание № 6 «Анализ фазовых равновесий жидкость – пар в двухкомпонентной системе»
- •2.2.3 Диаграммы плавкости
- •2.2.3.1 Типы диаграмм плавкости. Основные понятия
- •2.2.3.2 Диаграмма плавкости, компоненты которой полностью не растворимы друг в друге и в жидком и в твердом состояниях
- •2.2.3.3 Диаграмма плавкости, компоненты которой неограниченно растворимы друг в друге в жидком и в твердом состояниях
- •2.2.3.4 Диаграмма плавкости, компоненты которой неограниченно растворимы в жидком и полностью не растворимы друг в друге в твердом состояниях
- •2.2.3.5 Диаграмма плавкости, компоненты которой ограниченно растворимы друг в друге в твердом состоянии
- •2.2.3.6 Диаграмма плавкости, компоненты которой образуют между собой в твердом состоянии химическое соединение, плавящееся без разложения
- •2.2.3.7 Диаграмма плавкости, компоненты которой образуют между собой в твердом состоянии химическое соединение, плавящееся с разложением
- •2.2.3.8 Примеры анализа диаграмм состояния
- •2.2.3.9 Многовариантное задание № 7 «Анализ диаграмм плавкости»
- •2.3 Контрольные вопросы
- •2.4 Вопросы к теоретическому коллоквиуму по теме «Фазовые равновесия»
- •3 Электрохимические системы
- •3.1 Гальванические элементы
- •3.1.1 Классификация электродов
- •3.1.2 Классификация гальванических элементов
- •3.1.3 Определение термодинамических параметров реакции, протекающей в гальваническом элементе
- •3.1.4 Многовариантное задание №8 «Гальванические элементы»
- •3.2 Электрическая проводимость растворов электролитов
- •3.2.1 Многовариантное задание № 9 «Электрическая проводимость растворов электролитов»
- •3.3 Контрольные вопросы
- •4 Методы определения строения вещества
- •4.1 Электрические свойства молекул
- •4.1.1 Многовариантное задание № 10 «Электрические свойства молекул»
- •4.1.2. Контрольные вопросы
- •4.2 Оптические методы изучения строения молекул. Молекулярные спектры
- •4.2.1 Общая характеристика молекулярных спектров
- •4.2.2 Закон Бугера-Ламберта-Бера
- •4.2.3 Энергия вращения двухатомной молекулы в приближении жесткого ротатора. Вращательные спектры молекул и их применение для определения молекулярных характеристик
- •4.2.4 Многовариантное задание № 11 «Вращательные спектры двухатомных молекул»
- •4.2.5 Колебательные спектры двухатомных молекул
- •4.2.6 Многовариантное задание №12 «Колебательные спектры двухатомных молекул»
- •4.3 Контрольные вопросы
- •5 Элементы статистической термодинамики
- •5.1 Многовариантное задание № 13 «Расчет теплоемкости идеального газа»
- •5.2 Контрольные вопросы
- •6 Химическая кинетика
- •6.1 Многовариантное задание № 14 «Расчет кинетических параметров гомогенных химических реакций»
- •6.2 Многовариантное задание № 15 «Влияние температуры на скорость химической реакции»
- •6.3 Контрольные вопросы
- •Литература основная
- •Дополнительная
- •Приложение (рекомендованное)
- •Предметный указатель
- •Физическая химия
- •190013, Санкт-Петербург, Московский пр., 26
1 Химическая термодинамика и химическое равновесие
Химическая термодинамика – раздел физической химии, где изучаются взаимные превращения различных форм энергий в ходе химических реакций, а также определяется принципиальная возможность, направление и предел самопроизвольного протекания процессов в заданных условиях.
Термохимия – раздел химической термодинамики, в котором объектом изучения являются тепловые эффекты процессов, теплоёмкости веществ и другие, связанные с ними величины. Основная задача термохимии заключается в прямом или косвенном определении (путём измерений или вычислений) тепловых эффектов химических реакций и различных физико-химических процессов (например, фазовых, агрегатных превращений). Другой важной задачей термохимии является изучение теплоёмкости веществ. Экспериментальным методом термохимии служит калориметрия.
Термохимические данные и выявленные закономерности используются для расчетов тепловых балансов химико-технологических процессов и выбора (сочетании с другими термодинамическими характеристиками) оптимальных условий их проведения. Термохимические исследования позволяют связать энергетические характеристики веществ с их составом, строением и реакционной способностью.
Термодинамическая система – совокупность тел (веществ), находящихся во взаимодействии и отделенных от окружающей среды условной (воображаемой) или реальной границей (поверхностью раздела). В химической термодинамике рассматриваются только макроскопические системы, состоящие из очень большого числа частиц - поскольку только к этим системам применимы такие понятия как: температура, давление, теплота и некоторые другие. Взаимодействие системы с окружающей средой может происходить путём обмена энергией (механической, тепловой и др.) и веществом.
Открытая система – система, которая обменивается с окружающей средой и веществом, и энергией.
Закрытая система – система, которая обменивается с окружающей средой только энергией. В такой системе отсутствует обмен веществом с окружающей средой.
Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.
Состояние системы – совокупность всех физических и химических свойств системы, таких как масса, объем, давление, температура, химический состав, и др.
Параметры состояния – свойства системы, которых оказывается достаточно для однозначной характеристики её состояния. Основные параметры состояния: температура (T), давление (p), объем (V), количество вещества (n), концентрации веществ (х, с) в системе. Для системы не обязательно знать все параметры состояния, если они взаимосвязаны.
Термодинамический процесс – процесс, в котором происходит изменение параметров состояния системы.
Изотермический процесс – процесс, протекающий при неизменной температуре (T = const).
Изобарный процесс – процесс, протекающий при постоянном давлении (p = const).
Изохорный процесс – процесс, протекающий при постоянном объеме (V = const).
Стандартные
условия
– давление 101325 Па. Для термодинамических
функций, стандартные условия указываются
надстрочным индексом “0”.
Например,
Обратимый (или квазистатический) процесс - процесс, который осуществляется таким способом, что имеется возможность возвращения системы в исходное состояние через те же самые промежуточные квазиравновесные состояния, которые он проходил в прямом направлении, и при этом ни в самой системе, ни в окружающей среде не останется никаких стойких изменений. Термодинамическое понятие обратимого процесса не связано с направлением реакции (процесса), оно лишь указывает на определенный способ проведения реакции (процесса).
Экстенсивное свойство – свойство, которое зависит от количества вещества. Например, масса, объём, теплоемкость, энтропия и т.д.
Интенсивное свойство – свойство, которое не зависит от количества вещества. Например, плотность, удельная теплоёмкость и т.п.
Функции состояния – термодинамические свойства системы, изменение которых при переходе из одного состояния системы в другое зависит только от её начального и конечного состояния и не зависит от пути (способа) перехода.
Функции процесса – термодинамические свойства системы, изменение которых при переходе из одного состояния системы в другое зависит от пути (способа) перехода.
Внутренняя энергия (U) – функция состояния, которая характеризует общий запас энергии системы и включает в себя все виды энергий движения и взаимодействия всех частиц, составляющих систему: атомов, ядер, электронов, молекул и др.
Работа (W) – макроскопическая форма передачи энергии от одной системы к другой, в форме кинетической энергии направленного (упорядоченного) движения частиц. Работа является функцией процесса.
Теплота (Q) – микроскопическая, неупорядоченная, форма передачи энергии хаотически двигающимися частицами. Направление передачи теплоты определяется температурой. Теплота является функцией процесса. Понятия теплоты и работы применимы только к процессам, но не к состоянию системы.
Тепловой эффект химической реакции – количество тепла, которое выделяется или поглощается при необратимом проведении реакции в условиях, когда температуры исходных веществ и продуктов реакции одинаковы, давление или объем постоянны (p = const или V = const).
Экзотермическая реакция – реакция, идущая с выделением тепла.
Эндотермическая реакция – реакция, идущая с поглощением тепла.
Идеальный газ – газ, в котором взаимодействие между молекулами, а также их размеры по сравнению с расстояниями между частицами пренебрежимо малы. Идеальный газ - это предельное состояние реальных газов при бесконечно малом давлении. Термином «идеальный газ» обозначается газ, свойства которого описываются законами идеальных газов.
Уравнение состояния – уравнение, связывающее параметры состояния. Для идеального газа параметры состояния связаны уравнением Менделеева-Клапейрона:
|
(1.1) |
Теплоемкость системы – отношение количества сообщенной системе теплоты к наблюдаемому при этом повышению температуры. При этом предполагается, что нагревание не сопровождается: химическими превращениями, переходом вещества из одного агрегатного или фазового состояния в другое, совершением полезной работы.
Средняя
теплоемкость
(
)
– количество теплоты, необходимое для
нагревания системы на один градус
(Кельвин).
Истинная теплоемкость (C) – количество теплоты, необходимое для нагревания системы на бесконечно малую величину температуры. Истинная теплоемкость равна производной теплоты по температуре.
Изобарная теплоемкость (Cp)– отношение количества сообщенной при постоянном давлении (p = const) теплоты к наблюдаемому при этом повышению температуры системы.
Изохорная теплоемкость (CV)– отношение количества сообщенной при постоянном объеме (V = const) теплоты к наблюдаемому при этом повышению температуры системы.
Удельная теплоемкость – теплоемкость, рассчитанная на единицу массы вещества (кг или г).
Молярная теплоемкость – теплоемкость, рассчитанная на единицу количества вещества (моль).
Начала термодинамики – законы термодинамики, которые нельзя вывести из других более общих законов. Начала термодинамики являются постулатами. Однако, их можно считать твердо установленными фундаментальными законами природы, поскольку многовековой житейский, производственный и научный опыт человечества показал, что процессы, противоречащие этим постулатам, никогда не наблюдаются. На основании этих постулатов логическим путем выводятся многие другие закономерности, связывающие различные макроскопические свойства веществ.
