- •Курс лекций по общей химии
- •Содержание тем:
- •1. Химия и экология
- •Охрана воздушного бассейна
- •2.Строение атома
- •2.1. Квантовые числа
- •2.2. Принцип Паули
- •2.3. Принцип наименьшей энергии
- •2.4. Правило Хунда
- •2.5. Изображение электронного строения атома
- •Контрольные варианты
- •3. Периодическая система элементов д. И. Менделеева
- •Периодические свойства элементов
- •4. Химическая связь
- •4.1. Свойства ковалентной связи
- •4.2. Гибридизация атомных орбиталей
- •4.3. Полярные и неполярные молекулы
- •4.4. Металлическая связь
- •5.Энергетика химических процессов
- •6.Химическая кинетика.
- •7.Химическое равновесие.
- •Вопросы для самоконтроля по теме: «Закономерности протекания химических реакций»
- •Задачи по теме:
- •8.1. Способы выражения концентрации растворов
- •8.2. Примеры решения задач
- •8.2.1. Вычисления количеств компонентов раствора
- •322 Г Na2so4 × 10 h2o содержат - 142 г Na2so4
- •8.2.2. Вычисления при приготовлении разбавленных растворов из концентрированных
- •8.2.3. Вычисления при смешивании растворов
- •8.2.4. Пересчет концентрации из одной формы выражения в другую
- •8.2.5. Вычисления при химических реакциях
- •Контрольные вопросы и задачи
- •9.Свойства разбавленных растворов неэлектролитов
- •I закон Рауля:
- •II закон Рауля:
- •10. Растворы электролитов
- •11. Ионномолекулярные уравнения
- •12. Произведение растворимости
- •13. Ионное произведение воды. Водородный показатель.
- •14. Гидролиз солей
- •15. Дисперсные системы
- •16.1.Классификация дисперсных систем. Получение. Свойства и структура коллоидных систем
- •Методы получения дисперсных систем.
- •16. Химическая идентификация и анализ вещества
- •16.1. Химическая идентификация и анализ вещества
- •Вопросы и задачи для самоконтроля
- •16.2. Количественный анализ. Химические методы анализа
- •Вопросы и задачи для самоконтроля
- •16.3. Инструментальные методы анализа
- •Вопросы и задачи для самоконтроля
- •17. Окислительно-восстановительные реакции (овр)
- •Порядок нахождения степени окисления:
- •Ионно-электронный метод
- •18. Электрохимические процессы
- •18.1. Электродный потенциал
- •18.2. Гальванический элемент Даниэля – Якоби
- •18.3. Электродвижущая сила элемента (эдс)
- •18.4. Потенциалы металлических и газовых электродов
- •Ряд напряжений металлов:
- •19.Электролиз
- •Примеры
- •Электролиз с нерастворимым анодом водного раствора Na2so4:
- •20. Коррозия и защита металлов
- •20.1. Защита от коррозии. Металлические покрытия
- •21. Общие свойства металлов
- •21.1. Физические свойства металлов
- •21.2. Химические свойства металлов Отношение металлов к кислороду воздуха
- •Отношение металлов к воде
- •Это обусловлено наличием на поверхности алюминия очень плотного тонкого слоя химически инертной оксидной пленки, которая ни при каких условиях не взаимодействует с водой.
- •Отношение металлов к растворам кислот
- •А потенциал электродного процесса
- •Отношение некоторых металлов к кислотам
- •Отношение металлов к растворам щелочей
- •Электронные процессы
- •Отношение некоторых металлов к водным растворам щелочей
- •Отношение металлов к растворам солей
- •21.3. Природные соединения металлов
- •Контрольные вопросы
- •22.Жесткость и умягчение воды
- •Контрольные вопросы и задачи
- •23.Определение качественного состава природных вод
- •Общее содержание меди в земной коре сравнительно невелико, однако она чаще, чем другие металлы, встречается в самородном состоянии, причем самородки меди достигают значительной величины.
- •Некоторые свойства меди и ее аналогов
- •25. Ощая характеристика металлов 2 группы побочной подгруппы. Цинк
- •Некоторые свойства элементов побочной подгруппы
- •Контрольные вопросы
- •26. Общая характеристика металлов побочной подгруппы VI группы. Хром.
- •Хром 5224 Сr
- •27. Общая характеристика металлов побочной подгруппы
- •VII группы.Марганец.
- •Марганец 55 25Мп
- •Соединения марганца
- •Вопросы и задачи:
- •28. Железо 56 26Fe.
- •Соединения железа
- •29. Общая характеристика р-металлов
- •111 Группы побочной подгруппы. Алюминий.
- •Контрольные вопросы.
- •30. Общая характеристика р-металлов 4 группы побочной подгруппы. Олово, свинец.
- •Контрольные вопросы
- •31.Комплексные соединения.
- •31.1.Основные положения координационной теории
- •31.2 Номенклатура комплексных соединений
- •31.3.Устойчивость комплексных соединений
- •Классификация неорганических соединений
- •Классификация неорганических соединений
- •32.1. Оксиды. Номенклатура, классификация оксидов
- •32.2. Получение оксидов и их свойства. Основные, кислотные и амфотерные оксиды
- •Контрольные вопросы
- •Упражнения для самостоятельной работы
- •32.3. Гидроксиды (основания). Номенклатура, классификация гидроксидов
- •32.4. Свойства оснований
- •32.5. Понятие об амфотерных гидроксидах
- •Контрольные вопросы
- •Упражнения для самостоятельной работы
- •Кислоты. Классификация, номенклатура кислот
- •32.7. Свойства кислот
- •Формулы и названия важнейших кислот и их солей
- •Контрольные вопросы
- •Упражнения для самостоятельной работы
- •32.8.Соли. Классификация солей
- •33. Органические полимерные материалы
- •33.1. Методы получения полимеров
- •2Nh2-(сн2)5-соон →
- •Вопросы для самоконтроля
- •33.2. Строение полимеров
- •Вопросы для самоконтроля
- •33.3. Свойства полимеров
- •Вопросы для самоконтроля
- •33.4. Применение полимеров
- •Вопросы для самоконтроля
Вопросы для самоконтроля
1. Напишите структурную формулу винилацетата. Приведите схему полиризации этого соединения.
2. Приведите схему сополимеризации акрилонитрила, СН3СН2СN и винилацетата.
3. Приведите схему поликонденцации терефталевой кислоты С6Н4(СООН) и этиленгликоля.
33.2. Строение полимеров
Форма и структура макромолекул полимеров. Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми Линейные полимеры образуются при полимеризации мономеров или линейной поликонденсации. Разветвленные полимеры могут образовываться как при полимеризации, так и при поликонденсации. Разветвление полимеров при полимеризации может быть вызвано передачей цепи на макромолекулу, росте боковых цепей за счет сополимеризации и другими причинами. Разветвленные полимеры образуются при поликонденсации многофункциональных соединений, а также в результате прививки к макромолекулам боковых цепей. Прививки проводят либо путем взаимодействия полимеров с олигомерами или мономерами, или путем физического воздействия (например, γ-облучения) на смесь полимера и мономеров. Сетчатые полимеры образуются в результате сшивки цепей при вулканизации, образовании термореактивных смол и т.д. Форма макромолекул влияет на структуру и свойства полимеров.
Линейные и разветвленные макромолекулы из-за способности атомов и групп вращаться вокруг ординарных связей постоянно изменяют свою пространственную форму, или, другими словами, имеют много конформационных структур. Это свойство обеспечивает гибкость макромолекул, которые могут изгибаться, скручиваться, распрямляться. Поэтому для линейных и разветвленных полимеров характерно высокоэластическое состояние, т.е. способность к обратимой деформации под действием относительно небольших внешних сил. Они также обладают термопластическими свойствами, т.е. способны размягчаться при нагревании и затвердевать при охлаждении без химических превращений. При разветвлении полимеров эластические и термопластические свойства становятся менее выраженными. При образовании сетчатой структуры термопластичность теряется. По мере уменьшения длины цепей в ячейках сеток утрачивается и частичность полимеров, например при переходе от каучука к эбониту.
Линейные макромолекулы могут иметь регулярную и нерегулярную структуру. В полимерах регулярной структуры отельные звенья цепи повторяются в пространстве в определенном порядке. Полимеры регулярной структуры получили название стереорегулярных. Полимеры, у которых отдельные звенья расположены в пространстве бессистемно, имеют нерегулярную структуру. В качестве примера приведем полипропилен нерегулярной (а) и регулярной (б) структуры:
Стереорегулярные полимеры обычно получают методом ионной поляризации с использованием комплексных катализаторов. Стереорегулярной структурой обладают натуральный каучук, а также некоторые синтетические полимеры, например полиизобутилен, полиэтилен, полипропилен. Стереорегулярность структуры изменяет тепловые и механические свойства полимеров.
Кристаллическое состояние полимеров. Большинство полимеров обычно находится в аморфном состоянии. Однако некоторые Полимеры в определенных условиях могут иметь кристаллическую структуру. Способностью кристаллизоваться обладают лишь стереорегулярные полимеры. Благодаря регулярной структуре и гибкости макромолекулы могут сближаться друг с другом на достаточно близкое расстояние, чтобы между ними возникли эффективные межмолекулярные взаимодействия и даже водородные связи, которые приводят к упорядочению структуры. Процесс кристаллизации полимера протекает через несколько стадий. На первой стадии возникают пачки - ассоциаты упорядоченно расположенных молекул. Из пачек образуются фибриллы и сферолиты. Фибриллы представляют собой агрегаты пачек продолговатой формы, а сферолиты игольчатые образования, радиально расходящиеся из одного центр. Наконец, из фибрилл и сферолитов образуются единичны кристаллы. Кристаллические полимеры состоят из большого числа кристаллов, между которыми находятся участки с неупорядочен ной структурой (аморфные области). Поэтому такие полимеры характеризуются определенной степенью кристалличности. Например, степень кристалличности полиэтилена может достигать 80%. Наиболее выражена способность к образованию кристаллов у полиолефинов, полиамидов и полиэфиров. Кристаллическое строение имеет полимер карбин. Свойства кристаллических и аморфных полимеров существенно различаются. Так, аморфные полимеры характеризуются областью температур размягчения, т.е. областью постепенного перехода из твердого состояния в жидкое, а кристаллические полимеры - температурой плавления. Некоторые полимеры образуют жидкие кристаллы.
Физические состояния аморфных полимеров. Аморфные полимеры могут находиться в стеклообразном, высокоэластическом и вязкотекучем состояниях. Для определения температурных границ существования этих состояний изучают зависимость деформации полимера от температуры, на основании которой строят термомеханическую кривую:
При низкой температуре полимер находится в стеклообразном состоянии (область 1), в котором полимер ведет себя как другое твердое тело. В этом состоянии отсутствует движение, как в молекулы, так и отдельных звеньев, а проявляются лишь колебания атомов около положения равновесия. При повышении температуры полимер переходит в высокоэластическое состояние, свойственное только высокомолекулярным соединениям ( область 2) вещество в высокоэластическом состоянии способно к значительным обратимым деформациям, что обусловлено подвижностью звеньев и соответственно гибкостью макромолекул.
Перемещение звеньев происходит не мгновенно, поэтому деформации полимеров в высокоэластическом состоянии имеют релаксационную природу, т.е. характеризуются временем установления равновесия. Высокоэластическое состояние полимеров проявляется в интервале от температуры стеклования (Тст) до температуры текучести (Тт) ( область 2). Если температурный интевал Тст-Тт достаточно широк и захватывает обычные температуры, то такие полимеры называют эластиками, или эластомерами или каучуками. Полимеры с узким интервалом температур Тст-Тт, смещенным в область повышенных температур, называют пластиками или пластомерами. При обычных температурах пластики находятся в стеклообразном состоянии. При температуре выше температуры текучести Тт (область 3) полимер переходит в вязкотекучее состояние. Повышение температуры выше Тр ведет к деструкции, разрушению полимера. Вещество в вязкотекучем состоянии под действием напряжений сдвига течет как вязкая жидкость, причем деформация полимера является необратимой (пластической). Вязкотекучее состояние характеризуется подвижностью как отдельных звеньев, так и всей макромолекулы. При течении полимера происходит распрямление макромолекул и их сближение, приводящее к усилению межмолекулярного взаимодействия, в результате которого полимер становится жестким и течение его прекращается. Это явление, характерное только для аморфных полимеров, получило название механического стеклования. Его используют при формировании волокон и пленок. В вязкотекучем состояние полимер может быть также переведен путем добавления растворителей или пластификаторов, например эфиров фосфорной и фталевой кислот.
Итак, полимеры могут иметь линейную, разветвленную и сетчатую структуры и находиться в аморфном, а некоторые полимеры в кристаллическом состоянии.
