- •Курс лекций по общей химии
- •Содержание тем:
- •1. Химия и экология
- •Охрана воздушного бассейна
- •2.Строение атома
- •2.1. Квантовые числа
- •2.2. Принцип Паули
- •2.3. Принцип наименьшей энергии
- •2.4. Правило Хунда
- •2.5. Изображение электронного строения атома
- •Контрольные варианты
- •3. Периодическая система элементов д. И. Менделеева
- •Периодические свойства элементов
- •4. Химическая связь
- •4.1. Свойства ковалентной связи
- •4.2. Гибридизация атомных орбиталей
- •4.3. Полярные и неполярные молекулы
- •4.4. Металлическая связь
- •5.Энергетика химических процессов
- •6.Химическая кинетика.
- •7.Химическое равновесие.
- •Вопросы для самоконтроля по теме: «Закономерности протекания химических реакций»
- •Задачи по теме:
- •8.1. Способы выражения концентрации растворов
- •8.2. Примеры решения задач
- •8.2.1. Вычисления количеств компонентов раствора
- •322 Г Na2so4 × 10 h2o содержат - 142 г Na2so4
- •8.2.2. Вычисления при приготовлении разбавленных растворов из концентрированных
- •8.2.3. Вычисления при смешивании растворов
- •8.2.4. Пересчет концентрации из одной формы выражения в другую
- •8.2.5. Вычисления при химических реакциях
- •Контрольные вопросы и задачи
- •9.Свойства разбавленных растворов неэлектролитов
- •I закон Рауля:
- •II закон Рауля:
- •10. Растворы электролитов
- •11. Ионномолекулярные уравнения
- •12. Произведение растворимости
- •13. Ионное произведение воды. Водородный показатель.
- •14. Гидролиз солей
- •15. Дисперсные системы
- •16.1.Классификация дисперсных систем. Получение. Свойства и структура коллоидных систем
- •Методы получения дисперсных систем.
- •16. Химическая идентификация и анализ вещества
- •16.1. Химическая идентификация и анализ вещества
- •Вопросы и задачи для самоконтроля
- •16.2. Количественный анализ. Химические методы анализа
- •Вопросы и задачи для самоконтроля
- •16.3. Инструментальные методы анализа
- •Вопросы и задачи для самоконтроля
- •17. Окислительно-восстановительные реакции (овр)
- •Порядок нахождения степени окисления:
- •Ионно-электронный метод
- •18. Электрохимические процессы
- •18.1. Электродный потенциал
- •18.2. Гальванический элемент Даниэля – Якоби
- •18.3. Электродвижущая сила элемента (эдс)
- •18.4. Потенциалы металлических и газовых электродов
- •Ряд напряжений металлов:
- •19.Электролиз
- •Примеры
- •Электролиз с нерастворимым анодом водного раствора Na2so4:
- •20. Коррозия и защита металлов
- •20.1. Защита от коррозии. Металлические покрытия
- •21. Общие свойства металлов
- •21.1. Физические свойства металлов
- •21.2. Химические свойства металлов Отношение металлов к кислороду воздуха
- •Отношение металлов к воде
- •Это обусловлено наличием на поверхности алюминия очень плотного тонкого слоя химически инертной оксидной пленки, которая ни при каких условиях не взаимодействует с водой.
- •Отношение металлов к растворам кислот
- •А потенциал электродного процесса
- •Отношение некоторых металлов к кислотам
- •Отношение металлов к растворам щелочей
- •Электронные процессы
- •Отношение некоторых металлов к водным растворам щелочей
- •Отношение металлов к растворам солей
- •21.3. Природные соединения металлов
- •Контрольные вопросы
- •22.Жесткость и умягчение воды
- •Контрольные вопросы и задачи
- •23.Определение качественного состава природных вод
- •Общее содержание меди в земной коре сравнительно невелико, однако она чаще, чем другие металлы, встречается в самородном состоянии, причем самородки меди достигают значительной величины.
- •Некоторые свойства меди и ее аналогов
- •25. Ощая характеристика металлов 2 группы побочной подгруппы. Цинк
- •Некоторые свойства элементов побочной подгруппы
- •Контрольные вопросы
- •26. Общая характеристика металлов побочной подгруппы VI группы. Хром.
- •Хром 5224 Сr
- •27. Общая характеристика металлов побочной подгруппы
- •VII группы.Марганец.
- •Марганец 55 25Мп
- •Соединения марганца
- •Вопросы и задачи:
- •28. Железо 56 26Fe.
- •Соединения железа
- •29. Общая характеристика р-металлов
- •111 Группы побочной подгруппы. Алюминий.
- •Контрольные вопросы.
- •30. Общая характеристика р-металлов 4 группы побочной подгруппы. Олово, свинец.
- •Контрольные вопросы
- •31.Комплексные соединения.
- •31.1.Основные положения координационной теории
- •31.2 Номенклатура комплексных соединений
- •31.3.Устойчивость комплексных соединений
- •Классификация неорганических соединений
- •Классификация неорганических соединений
- •32.1. Оксиды. Номенклатура, классификация оксидов
- •32.2. Получение оксидов и их свойства. Основные, кислотные и амфотерные оксиды
- •Контрольные вопросы
- •Упражнения для самостоятельной работы
- •32.3. Гидроксиды (основания). Номенклатура, классификация гидроксидов
- •32.4. Свойства оснований
- •32.5. Понятие об амфотерных гидроксидах
- •Контрольные вопросы
- •Упражнения для самостоятельной работы
- •Кислоты. Классификация, номенклатура кислот
- •32.7. Свойства кислот
- •Формулы и названия важнейших кислот и их солей
- •Контрольные вопросы
- •Упражнения для самостоятельной работы
- •32.8.Соли. Классификация солей
- •33. Органические полимерные материалы
- •33.1. Методы получения полимеров
- •2Nh2-(сн2)5-соон →
- •Вопросы для самоконтроля
- •33.2. Строение полимеров
- •Вопросы для самоконтроля
- •33.3. Свойства полимеров
- •Вопросы для самоконтроля
- •33.4. Применение полимеров
- •Вопросы для самоконтроля
Вопросы для самоконтроля по теме: «Закономерности протекания химических реакций»
Что называется тепловым эффектом химической реакции?
Сформулировать закон Гесса и следствие из него.
Дать определение стандартной величины энтальпии образования вещества.
Что представляет собой термохимическое уравнение?
Какие реакции называются экзо- и эндотермическими?
В каком направлении химические реакции протекают самопроизвольно?
Как изменяется энтропия в процессах: кристаллизации, конденсации, сжатии, полимеризации?
Дать определение скорости химической реакции.
Сформулировать закон действия масс, правило Вант – Гоффа.
От каких факторов зависит скорость химической реакции?
Для каких реакций применимо понятие химического равновесия?
Что показывает величина константы равновесия?
От чего зависит константа равновесия?
В каком направлении сместится равновесие реакции при повышении температуры? CO (г)+2H2(г)=CH3OH (г)+ H
Задачи по теме:
“Энергетика химической реакции”
№1 Вычислите тепловой эффект реакции восстановления оксида железа (II) водородом, исходя из следующих термохимических уравнений:
FeO(к)+CO(г) = Fe(к)+CO2(г); ∆H = -13,18 кДж
CO(г)+1/2O2(г)=CO2(г); ∆H = -283,0 кДж
H2(г)+1/2O2(г)=H2O(г); ∆H = -241,83 кДж.
№2 При взаимодействии газообразных сероводорода и диоксида углерода образуются пары воды и сероуглерод CS2(г). Напишите термохимическое уравнение этой реакции, вычислив ее тепловой эффект.
№3 При восстановлении 12,7 г оксида Cu(II) углем (с образованием угарного газа) поглощается 8,24 кДж тепла. Определить ∆Н°298 образования CuO.
№4 Исходя из уравнения реакции CH3OH(ж)+3/2O2(г)=CO2(г)+2H2O(ж) ∆Н°=-726,5 кДж вычислить ∆Н°298 образования метилового спирта.
№5 Вычислите ∆Н°, ∆S°, ∆GT° реакции, протекающей по уравнению Fe2O3(к)+3C=2Fe+3CO. Возможна ли реакция восстановления Fe2O3 углеродом при температуре: 500 или 1000К.
№6 При какой температуре наступит равновесие системы 4HCl(г)+O2(г)=2H2O(г)+2Cl2(г) ∆Н=-114,42 кДж. Хлор или кислород в этой системе является более сильным окислителем и при каких температурах?
№7 Прямая или обратная реакция будет протекать при стандартных условиях в системе: СН4(г)+СО2(г)=2СО(г) + 2Н2(г).
№8 На основании стандартных теплот образования и стандартных энтропий веществ вычислить ∆G˚298 реакции: СО(г)+Н2О(ж)=СО2(г)+Н2(г).
№9 Пользуясь табличными данными вычислить ∆Н реакции 2Mg(к)+CO2(г)=2MgO(к) + C(к).
№10 При сжигании серы выделилось 73,48 кДж тепла и получилось 16г SO2. Вычислить теплоту образования SO2.
№11 Указать, какие из реакций образования оксидов азота и при каких температурах (высоких или низких) могут в стандартных условиях протекать самопроизвольно:
а) 2N2(г)+O2(г)=2N20(г); ∆H˚298>0
б) N2(г)+O2(г)=2NO(г); ∆H˚298>0
в) 2NO(г)+O2(г)=2NO2(к); ∆H˚298<0
г) NO(г)+NO2(г)=N2O3(к); ∆H˚298<0
д) N2(к)+2O2(г)=2NO2(г); ∆H˚298>0
№12 Вычислите изменение энтропии для реакций, протекающих по уравнениям:
2CH4(г)=C2H2(г)+3H2(г)
N2(г)+3H2(г)=2NH3(г)
C(графит)+O2(г)=CO2(г)
Почему в этих реакциях ∆S˚298>0; <0; ≈0?
8. Р А С Т В О Р Ы
Растворами называются гомогенные (однофазные) системы, содержащие не менее двух веществ. Наибольшее значение имеют жидкие смеси, в которых растворителем является жидкость.
В процессе растворения частицы (ионы или молекулы) растворяемого вещества под действием хаотически движущихся частиц растворителя переходят в раствор, образуя качественно новую однородную систему. Способность к образованию растворов выражена у разных веществ в различной степени. Одни вещества способны смешиваться друг с другом в любых количествах (вода и спирт), другие – в ограниченных количествах (хлорид натрия и вода). По соотношению преобладания числа частиц, переходящих в раствор и удаляющихся из раствора, различают растворы насыщенные, ненасыщенные и пересыщенные. С другой стороны, по относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные.
Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным, а раствор, в котором еще можно растворить добавочное количество данного вещества, - ненасыщенным. Отношение массы вещества, образующего насыщенный раствор при данной температуре, к массе растворителя называют растворимостью этого вещества, или коэффициентом растворимости.
Растворимость веществ существенно зависит от природы растворяемого вещества и растворителя, температуры и давления. Причины различной растворимости веществ до конца не выяснены, хотя их связывают с характером взаимодействия молекул растворителя и растворенного вещества.
Еще до обоснования теории растворов опытным путем было установлено правило, согласно которому подобное растворяется в подобном. Так, вещества с ионным (соли, щелочи) или полярным (спирты, альдегиды) типом связи хорошо растворимы в полярных растворителях, в первую очередь в воде. И наоборот, растворимость кислорода в бензоле, например на порядок выше, чем в воде, так как молекулы О2 и С6Н6 неполярны.
Для подавляющего большинства твердых тел растворимость увеличивается с повышением температуры. Если раствор, насыщенный при нагревании, осторожно охладить так, чтобы не выделялись кристаллы соли, то образуется перенасыщенный раствор. Перенасыщенным называется раствор, в котором при данной температуре содержится большее количество растворенного вещества, чем в насыщенном растворе. Перенасыщенный раствор неустойчив, и при изменении условий (при встряхивании или внесении в раствор затравки для кристаллизации) выпадает осадок, над которым остается насыщенный раствор.
В отличие от твердых тел растворимость газов в воде с повышением температуры уменьшается, что обусловлено непрочностью связи между молекулами растворенного вещества и растворителя. Другой важной закономерностью, описывающей растворимость газов в жидкостях, является закон Генри: растворимость газа прямо пропорциональна его давлению над жидкостью.
