- •1. Предмет и задачи микробиологии
- •2 Краткий очерк развития микробиологии. Основоположники науки о микробах. Пастер,Кох,Мечнтков.
- •3 Основные принципы классификации микроорганизмов.
- •4 Формы, размеры и строение микробной клетки
- •5 Движение и распространение микробов
- •6 Процесс спорообразование.
- •8 Морфология плесневых грибов и дрожжей.Классификация грибов.
- •9 Морфология актиномицетов и их значение
- •10 Вирусы их характеристика. Роль русских ученных в их открытие.
- •11 Морфологические особенности риккетсий и микоплазм
- •12 Место внедрения и пути распространения микробов в организме
- •14 Ферменты микроорганизмов
- •15 Дыхание микробов
- •16 Питание микробов
- •17 Фагоцитоз
- •Этапы фагоцитоза
- •8. Выброс продуктов деградации.
- •18 Усвоение углерода микроорганизмами и их деление на группы
- •19 Влияние химических внешней среды на микроорганизмы. Понятие о дизенфекции.
- •20. Влияние физических факторов на жизнедеятельность микроорганизмов.(температура,влажность,ph)
- •24 Генотипические формы изменчивости микроорганизмов(мутации и рекомбинации генов)
- •26.Микрофлора воздуха
- •27.Превращение углерода в природе
- •28. Спиртовое брожение и его возбудители
- •29. Молочнокислое брожение и его возбудители. Продукты молочнокислого брожения
- •30.Маслянокислое брожение и его разновидности,характерные особенности возбудителей
- •31. Превращение азота в природе.
- •33 Фиксация молекулярного азота микроорганизмами
- •34 Нитрифицирующие и денитрифицирующие микроорганизмы и вызываемые ими процессы
- •35 Понятие об инфекции.Динамика инфекционного процесса.Патогенность и вирулентность микробов. Направленное изменение вирулентности.
- •36 Роль микроорганизма и других факторов в возникновении развитии инфекционного процесса.
- •40. Серологические реакции(ра,рп.ЮРск)
- •41 Возбудители колибактериоза и сальмонеллеза, их дифференциация
- •42 Возбудитель рожи свиней
- •43 Возбудитель бруцеллеза
- •44 Возбудитель столбняка
- •45 Возбудитель туберкулеза
- •46 Возбудитель эмфизематозного карбункула
- •47 Возбудитель сибирской язвы
- •48 Возбудитель ботулизма
- •49 Состав эпифитной микрофлоры растений и ее роль при приготовлении кормов
- •50 Дрожжевание кормов и его микробиологическое обоснование. Кормовые дрожжи эффективность их применения
- •51 Динамика микробиологических процессов при силосовании. Физиологические группы микроорганизмов.
- •52 Холодный и горячий способы силосования. Микробиологические и биохимические процессы при созревания силоса.
- •54 Обыкновенное и бурое сено. Рациональные методы приготовления и хранение растительных кормов.
- •55 Нормальная микрофлора молока последовательность смены фаз при его хранении.
- •56 Пороки молока микробного происхождения. Способы консервирования молока
- •57 Болезни предаваемые через молоко. Методы обеззараживания молока
- •58 Микрофлора простокваши,кефира и других кисломолочных продуктов.
- •59 Влияние микробиологических процессов на качество масла.
- •60 Микробиологические процессы при созревании сыров. Пороки сыров микробного происхождения и меры борьбы с ними.
- •61 Микрофлора тела животного
- •62 Микробиологические процессы в жкт животных
- •63 Содержание и распределение микробов в мясе. Пороки мяса микробного происхождения гниение, кислотное брожение, пигментация.
- •64 Мясо и кожевенно-меховое сырье, как возможный источник инфекционных болезней животных и человека.
- •65 Яица как возможный источник инфекции. Условия и способы хранения, консервирование яиц
- •66 Микробиология навоза. Разложение микроорганизмами азотитстых и углеродистых соединений
- •69 Антибиотики растительного и животного происхождения
- •70 Факторы среды определяющие формирование микробных ассоциаций в почве.
- •71 Развитие взглядов ученых на роль микробов в формировании почвы
- •72 Микроорганизмы почв различных типов
- •73 Микориза растений
- •74 Ризосферная микрофлора ее роль в жизни растений
- •75 Микрофлора зерна свежих овощей плодов
6 Процесс спорообразование.
Споры (эндоспоры) бактерий — особый тип покоящихся репродуктивных клеток, характеризующихся резко сниженным уровнем метаболизма и высокой резистентностью.Бактериальная спора формируется внутри материнской клетки и называется эндоспорой. Способностью к образованию спор обладают преимущественно палочковидные грамположительные бактерии родов Bacillus и Clostridium, из шаровидных бактерий — лишь единичные виды, например, Sporosarcina ureae. Как правило, внутри бактериальной клетки образуется только одна спора.Основная функция спор—сохранение бактерий в неблагоприятных условиях внешней среды. Переход бактерий к спорообразованию наблюдается при истощении питательного субстрата, недостатке углерода, азота, фосфора, накоплении в среде катионов калия и марганца, изменении рН, повышении содержания кислорода и т. д.Процесс образования спор проходит ряд последовательных стадий:подготовительная. Изменяется метаболизм, завершаетется репликация ДНК и происходит ее конденсация. Клетка содержит два или более нуклеоида, один из них локализуется в спорогенной зоне, остальные — в цитоплазме спорангия. Одновременно синтезируется дипиколиновая кислота;стадия предспоры. Со стороны цитоплазматической мембраны вегетативной клетки происходит врастание двойной мембраны, или септы, отделяющей нуклеоид с участком уплотненной цитоплазмы (спорогенная зона). В результате чего образуется проспора, окруженная двумя мембранами;образование оболочек. Вначале между мембранами про-споры образуется зачаточный пептидогликановый слой, затем над ним откладывается толстый пептидогликановый слой кор-текса и вокруг его наружной мембраны формируется споровая оболочка;созревание споры. Заканчивается образование всех структур споры, она становится термоустойчивой, приобретает характерную форму и занимает определенное положение в клетке.
7 Бактериофаги Бактериофаги (от «бактерия» и греч. phagos – пожиратель) – вирусы бактерий, обладающие способностью специфически проникать в бактериальные клетки, репродуцироваться в них и вызывать их растворение (лизис).История открытия бактериофагов связана с именем канадского исследователя Ф. д’Эрелля (1917), который обнаружил эффект лизиса бактерий, выделенных из испражнений больного дизентерией. Такие явления наблюдали и другие микробиологи [Гамалея Н. Ф., 1898; Туорт Ф., 1915], но лишь Ф. д'Эрелль, предположив, что имеет дело с вирусом, выделил этот «литический фактор» с помощью бактериальных фильтров и назвал его бактериофагом.В дальнейшем выяснилось, что бактериофаги широко распространены в природе. Их обнаружили в воде, почве, пищевых продуктах, различных выделениях из организма людей и животных, т.е. там, где встречаются бактерии. В настоящее время эти вирусы выявлены у большинства бактерий, как болезнетворных, так и неболезнетворных, а также ряда других микроорганизмов (например, грибов). Поэтому в широком смысле их стали называть просто фагами.Фаги различаются по форме, структурной организации, типу нуклеиновой кислоты и характеру взаимодействия с микробной клеткой.Морфология. Большинство фагов под электронным микроскопом имеют форму головастика или сперматозоида, некоторые – кубическую и нитевидную формы. Размеры фагов колеблются от 20 до 800 нм у нитевидных фагов. Наиболее полно изучены крупные бактериофаги, имеющие форму сперматозоида. Они состоят из вытянутой икосаэдричес-кой головки размером 65.100 нм и хвостового отростка длиной более 100 нм. Внутри хвостового отростка имеется полый цилиндрический стержень, сообщающийся отверстием с головкой, снаружи – чехол, способный к сокращению наподобие мышцы. Хвостовой отросток заканчивается шестиугольной базальной пластинкой с короткими шипами, от которых отходят нитевидные структуры – фибриллы.Существуют также фаги, имеющие длинный отросток, чехол которого не способен сокращаться, фага с короткими отростками, аналогами отростков, без отростка.Химический состав. Фаги состоят из двух основных химических компонентов – нуклеиновой кислоты (ДНК или РНК) и белка. У фагов, имеющих форму сперматозоида, двунитчатая ДНК плотно упакована в виде спирали внутри головки.Белки входят в состав оболочки (капсида), окружающей нуклеиновую кислоту, и во все структурные элементы хвостового отростка. Структурные белки фага различаются по составу полипептидов и представлены в виде множества идентичных субъединиц, уложенных по спиральному или кубическому типу симметрии. Кроме структурных белков, у некоторых фагов обнаружены внутренние (геномные) белки, связанные с нуклеиновой кислотой, и белки-ферменты (лизоцим, АТФ-аза), участвующие во взаимодействии фага с клеткой. Резистентность. Фаги более устойчивы к действию химических и физических факторов, чем бактерии. Ряд дезинфицирующих веществ (фенол, этиловый спирт, эфир и хлороформ) не оказывают существенного влияния на фаги. Высокочувствительны фаги к формалину и кислотам. Инактивация большинства фагов наступает при температуре 65-70ºС. Длительное время они сохраняются при высушивании в запаянных ампулах, замораживании при температуре -185ºС в глицерине.Взаимодействие фага с бактериальной клеткой. По механизму взаимодействия различают вирулентные и умеренные фаги. Вирулентные фаги, проникнув в бактериальную клетку, автономно репродуцируются в ней и вызывают лизис бактерий. Процесс взаимодействия вирулентного фага с бактерией протекает в виде нескольких стадий и весьма схож с процессом взаимодействия вирусов человека и животных с клеткой хозяина (см. 3-5.1). Однако для фагов, имеющих хвостовой отросток с сокращающимся чехлом, он имеет особенности. Эти фаги адсорбируются на поверхности бактериальной клетки с помощью фибрилл хвостового отростка. В результате активации фагового фермента АТФазы происходит сокращение чехла хвостового отростка и внедрение стержня в клетку. В процессе «прокалывания» клеточной стенки бактерии принимает участие фермент лизоцим, находящийся на конце хвостового отростка. Вслед за этим ДНК фага, содержащаяся в головке, проходит через полость хвостового стержня и активно впрыскивается в цитоплазму клетки. Остальные структурные элементы фага (капсид и отросток) остаются вне клетки. После биосинтеза фаговых компонентов и их самосборки в бактериальной клетке накапливается до 200 новых фаговых частиц. Под действием фагового лизоцима и внутриклеточного осмотического давления происходит разрушение клеточной стенки, выход фагового потомства в окружающую среду и лизис бактерии. Один литический цикл (от момента адсорбции фагов До их выхода из клетки) продолжается 30-40 мин. Процесс бактериофагии проходит несколько циклов, пока не будут ли-зированы все чувствительные к данному фагу актерии.Взаимодействие фагов с бактериальной клеткой характеризуется определенной степенью специфичности. По специфичности действия различают поливалентные фаги, способные взаимодействовать с родственными видами бактерий, моновалентные фаги, взаимодействующие с бактериями определенного вида, и типовые фаги, взаимодействующие с отдельными вариантами (типами) данного вида бактерий. Практическое использование фагов. Применение фагов основано на их строгой специфичности действия. Фаги используют в диагностике инфекционных болезней: с помощью известных (диагностических) фагов проводят идентификацию выделенных культур микроорганизмов. Вследствие высокой специфичности фагов можно определить вид возбудителя или варианты (типы) внутри вида. Фаготипирование имеет большое эпидемиологическое значение, так как позволяет установить источник и пути распространения инфекции; – с помощью тест-культуры можно определить неизвестный фаг в исследуемом материале, что указывает на присутствие в нем соответствующих возбудителей.Фаги применяют для лечения и профилактики инфекционных болезней. Производят брюшнотифозный, дизентерийный, синегной-ный, стафилококковый фаги и комбинированные препараты. Способы введения в организм: местно, энтерально или парентерально. Умеренные фаги используют в генетической инженерии и биотехнологии в качестве векторов для получения рекомбинан-тных ДНК.
