- •1.1. Требования к уровню освоения содержания дисциплины
- •1.2. Требования к уровню подготовки для освоения дисциплины
- •2. Цели и задачи дисциплины преподавания и изучения дисциплины
- •Рекомендуемая учебно-методическая литература
- •Список понятий, знание которых необходимо на момент начала изучения курса
- •Тема 1. Основные понятия и определения
- •1.1. Основные понятия и определения
- •1.2. Система «Станок-процесс резания» как объект управления.
- •1.3. Классификация систем автоматического управления.
- •1.4. Структурная схемы сау
- •Вопросы
- •Тема 2. Принципы управления
- •2.1. Принцип управления по возмущению.
- •2.2. Принцип управления по отклонению.
- •2.3. Комбинированный принцип управления.
- •Вопросы.
- •Тема 3. Статика систем автоматического управления
- •3.1. Определение результирующих передаточных коэффициентов
- •3.2. Графические способы построения статических характеристик.
- •3.3. Линеаризация статических характеристик сау
- •Вопросы.
- •Тема 4. Динамика линейных систем автоматического управления.
- •Вопросы
- •Тема 5. Типовые динамические звенья
- •5.1. Основные характеристики.
- •5.2 Основные типовые динамические звенья
- •5.2.1. Безинерционное звено.
- •5.2.2. Апериодическое звено
- •5.2.3. Интегрирующее звено
- •5.2.4. Дифференцирующее звено
- •5.2.5. Колебательное звено
- •5.3. Правила структурных преобразований сау и определение передаточных функций сложных систем.
- •Вопросы.
- •Тема 6. Характеристики основных элементов сау.
- •1. Усилители мощности
- •1.1. Тиристорный преобразователь.
- •1.2. Широтно-импульсный преобразователь.
- •2. Измерительные преобразователи и датчики.
- •2.1 Датчик тока
- •2.2. Датчики скорости
- •2.3. Датчики положения механизма.
- •3. Электромеханические преобразователи
- •3.1. Электродвигатель постоянного тока
- •3.2. Асинхронный электродвигатель
- •3.3. Бесконтактный электродвигатель
- •4. Механические системы.
- •5. Процесс механообработки
- •Вопросы.
- •Тема 7. Устойчивость и наблюдаемость систем автоматического управления.
- •7.1. Математический признак устойчивости.
- •7.2. Критерии устойчивости линейных сау.
- •7.2.1. Алгебраический критерий Гурвица
- •7.2.2. Алгебраический критерий Рауса.
- •7.2.3. Частотный критерий Михайлова.
- •7.2.4. Частотный критерий Найквиста.
- •7.2.5. Логарифмический частотный критерий.
- •7.3. Понятие об управляемости системы и ее наблюдаемости.
- •Вопросы.
- •Тема. 8. Оценка качества регулирования сау
- •8.1. Точность в типовых режимах
- •8.2. Коэффициенты ошибок
- •8.3. Оценка запаса устойчивости и быстродействия по переходной характеристике
- •8.3. Корневые методы оценки качества
- •8.4. Интегральные оценки качества
- •8.5. Частотные критерии качества
- •Вопросы.
- •Тема 9. Проектирование регуляторов технологических агрегатов
- •9.1. Общие замечания
- •9.2. Синтез сау методом логарифмических частотных характеристик
- •9.3. Подчиненное управление в сау
- •9.4. Модальное управление в сау
- •Вопросы.
- •Тема 10. Наблюдающие устройства.
- •10.1. Наблюдающие устройства Льюинбергера
- •10.2. Наблюдающее устройство идентификации
- •10.3. Редуцированное устройство идентификации.
- •Вопросы.
- •Тема 11. Дискретные системы
- •11.1. Импульсные, релейные и цифровые сау
- •11.2. Математический аппарат описания импульсных систем
- •12. Цифровые сау
- •12.1. Процессы протекающие в системах цифрового управления.
- •12.2. Методика вывода дискретных передаточных функций
- •12.3. О синтезе систем с цвм методом лчх
- •12.3.1. Цифровая коррекция
- •12.3.2. Цифровые регуляторы
- •12.3.4. Алгоритмы программ цифровых фильтров
- •12.4.Об эффекте квантования параметров
- •Вопросы.
2. Измерительные преобразователи и датчики.
2.1 Датчик тока
Датчик тока (измерительный трансформатор тока) с фильтром, как элемент САУ, описывается дифференциальным уравнением вида:
|
(2) |
где
–
передаточный коэффициент датчика тока;
–
номинальный ток
тиристорного преобразователя;
–
постоянная времени
фильтра в обратной связи по току.
При изменении тока
двигателя
изменяется
напряжение на выходе
,
тогда уравнение (2) в приращениях примет
вид:
.
Это уравнение в операторной форме записи представляется как:
.
Тогда передаточная функция датчика тока с фильтром примет вид:
.
Для практических
расчетов можно пренебречь постоянной
времени фильтра (
,
тогда передаточная функция датчика
тока примет вид безинерционного звена:
.
2.2. Датчики скорости
Наиболее широко применяемым в системах управления технологическим оборудованием датчиком скорости является тахогенератор, на выходе которого включается дополнительный фильтр. Эти элементы САУ, описываются следующим дифференциальным уравнением:
|
(3) |
где
–
коэффициент обратной связи по скорости;
–
постоянная времени
фильтра в обратной связи по скорости.
Тахогенератор
является безинерционным звеном
,
а инерционность вносится за счет фильтра
(
).
При изменении скорости тахогенератора
на
изменится
и напряжение на выходе —
.
Тогда уравнение (3) в приращениях примет
вид:
,
Переходя к операторной форме записи, получаем:
,
Преобразовывая это уравнение, получаем передаточную функцию обратной связи по скорости:
.
2.3. Датчики положения механизма.
В подавляющем большинстве станочного оборудования с числовым программным управлением используются измерительные преобразователи перемещения с импульсным или цифровым выходными сигналами. К ним относятся измерительные электромагнитные, электромашинные и фотоэлектрические преобразователи перемещения исполнительного механизма. В подавляющем своем большинстве точное математическое представление измерительных преобразователей перемещения требует использование дискретной математики. Однако для широкого класса систем автоматического управления возможно представление таких устройств как безинерционных элементов с передаточной функцией вида:
;
где
–
разрешающая способность измерительного
преобразователя перемещения,
–
выходной сигнал
измерительного преобразователя;
— угол поворота вала измерительного преобразователя.
Разрешающая способность измерительных преобразователей, связанных с валом исполнительного механизма, определяется как
,
где N – число меток измерительного преобразователя на один оборот его вала.
3. Электромеханические преобразователи
В САУ используются различные исполнительные устройства, предназначенные для выполнения необходимых технологических операций. В качестве исполнительных преобразователей могут использоваться устройства, такие как электрические машины, гидравлические и пневматические преобразователи, нагревательные и акустические приборы. В технологическом оборудовании, используемом в механообработке, наиболее часто используются электромеханические преобразователи, в качестве которых используются электрические машины. Наиболее часто применяются электродвигатели постоянного тока, асинхронные электродвигатели и синхронные электрические машины, работающие в режиме бесконтактного двигателя. Рассмотрим их основные характеристики, которые необходимы для их рассмотрения, как объектов теории автоматического управления.
