Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ_пособие.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
11.15 Mб
Скачать

Эффектом Комптона называется явление упругого рассеяния фотонов рентгеновского излучения на свободных и слабо связанных электронах вещества, сопровождающееся увеличением длины волны излучения 

=2c sin2/2, (4.11)

где  - угол рассеяния, c=h/mc=0,243 нм – комптоновская длина волны электрона. Увеличение длины волны излучения объясняется тем, что фотон при рассеянии передает электрону часть своей энергии и импульса.

Таким образом, в явлениях интерференции, дифракции, поляризации электромагнитное излучение ведет себя как волна. С другой стороны, тепловое излучение, фотоэффект, эффект Комптона служат убедительным доказательством того, что электромагнитное излучение представляет собой поток фотонов. Давление света и преломление света одинаково хорошо объясняются как квантовой, так и волновой теориями. Электромагнитное излучение обнаруживает удивительное единство, казалось бы, взаимоисключающих свойств – непрерывных (волны) и дискретных (фотоны), которые взаимно дополняют друг друга.

Корпускулярные свойства света – энергия Е и импульс p – связаны с его волновыми свойствами – частотой (длиной волны λ) соотношениями

Е=h, p=h/с= h/λ. (4.12)

Свойства непрерывности, характерные для электромагнитного поля световой волны, не следует противопоставлять свойствам дискретности, характерным для фотонов. Свет обладает корпускулярными и волновыми свойствами одновременно и обнаруживает определенные закономерности в их проявлении. Волновые свойства света проявляются в закономерностях его распространения, а корпускулярные – в процессах его взаимодействия с веществом. Энергия и импульс фотона уменьшаются с увеличением длины волны (уменьшением частоты), поэтому длинноволновое излучение обнаруживает преимущественно волновые свойства. Наоборот, коротковолновое излучение, обладающее значительными энергией и импульсом фотонов, труднее обнаруживает волновые свойства и проявляет преимущественно свойства корпускулярные. Например, дифракция рентгеновских лучей наблюдается только на пространственных решетках – кристаллах, имеющих расстояние между атомами порядка 10-10 м.

Взаимосвязь между двойственными корпускулярно-волновыми свойствами электромагнитного излучения можно объяснить, используя статистический подход к рассмотрению оптических явлений. Дифракционная картина возникает вследствие различной вероятности попадания фотонов в различные точки экрана. Облученность любой точки экрана пропорциональна вероятности попадания в эту точку фотонов. С другой стороны, по волновой теории облученность экрана пропорциональна квадрату амплитуды световой волны в той же точке экрана. Следовательно, квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотонов в данную точку.

4.7 Волновые свойства микрообъектов и их вероятностное описание

Как отмечалось в предыдущем параграфе, в результате углубления представлений о природе света выяснилось, что в оптических явлениях обнаруживается корпускулярно-волновой дуализм: в одних явлениях (интерференция, дифракция, поляризация) электромагнитное излучение ведет себя как волна, в других (тепловое излучение, фотоэффект, эффект Комптона) – как поток квантов. Л. де Бройль (1924) выдвинул гипотезу, согласно которой дуализм не является особенностью только оптических явлений, а имеет универсальное значение. Каждому микрообъекту можно поставить в соответствие волновой процесс, длина волны которого определяется так же, как и для фотонов:

=h/p=h/mV. (4.13)

Гипотеза де Бройля была подтверждена экспериментально в опытах К. Дэвиссона и Л. Джермера (1927) по отражению электронов от монокристаллов никеля; экспериментально наблюдаемой дифракционной картине при прохождении электронного пучка через металлическую фольгу (Г.П.Томсон, 1927; В.А. Фабрикант и др., 1949). Было показано, что волновые свойства присущи каждому отдельному электрону.

По современным представлениям всякий микрообъект представляет собой образование особого рода, сочетающее в себе свойства и частицы, и волны (это “частица – волна”). Отличие микрообъекта от волны заключается в том, что он всегда проявляет себя как неделимое целое (например, никто никогда не наблюдал полэлектрона). Электрон, как и все другие микрочастицы, всегда обнаруживается как целое, с присущей ему массой, зарядом и другими характерными свойствами. В то же время волну можно разделить оптическими методами на части и воспринимать затем каждую часть в отдельности. Отличие микрообъекта от обычной макрочастицы заключается в том, что он не обладает одновременно определенными значениями координаты и импульса, вследствие чего понятие траектории применительно к микрообъекту утрачивает смысл. Таким образом, даже очень маленький шарик не может служить прообразом микрочастицы. С уменьшением размеров начинают проявляться качественно новые свойства, отсутствующие у макрочастиц.

Волновые свойства микрообъектов приводят к тому, что квантовая механика, описывающая их поведение, имеет статистический характер. Для характеристики состояния микрообъектов вводится волновая функция  (пси-функция), имеющая вероятностный смысл. Квадрат модуля волновой функции 2 определяет вероятность того, что частица будет обнаружена в пределах бесконечно малого объема dV. Основным уравнением нерелятивистской квантовой механики является уравнение Шредингера, позволяющее определить пси-функцию микрообъекта и, следовательно, определить вероятность нахождения микрообъекта в различных точках пространства.