Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АВИАЦИОННЫЕ ДВИГАТЕЛИ. Часть 2.).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.85 Mб
Скачать

Авиационные двигатели Конспект лекций

Раздел 1. Авиационные газотурбинные двигатели

Тема 1. Этапы развития авиационных двигателей

Важнейшим элементом любого летательного аппарата является двигатель, характеристики которого в значительной степени определяют возможность достижения больших высот, скоростей и дальности полета.

До конца второй мировой войны монопольное положение в авиации занимали силовые установки с поршневыми двигателями (генераторы мощности) и воздушными винтами (движители). В период интенсивного развития поршневых двигателей (1915-1945) их мощность удалось повысить ≈ в 30 раз (до 1500-2000 кВт) а удельный вес снизить ≈ в 6 раз (до 0,6-0,8 кг/кВт). Это позволило довести скорость полета до 600-700 км/ч.

Для дальнейшего повышения скорости полета потребовалось резкое увеличение мощности силовой установки из-за существенного снижения аэродинамического качества самолета и КПД воздушного винта в области высоких дозвуковых скоростей полета.

Дальнейшее повышение мощности поршневых двигателей сопровождалось опережающим повышением их веса и габаритов, что приводило к дополнительным аэродинамическим сопротивлениям.

Главное препятствие на пути повышения мощности поршневых двигателей было связано с особенностью их рабочего процесса, который не допускал большого увеличения расхода воздуха, необходимого для сжигания больших количеств топлива в цилиндрах (необходимость полной герметизации цилиндров в тактах сжатия и рабочего хода крайне ограничивает размеры проходных сечений клапанов в тактах наполнения и выхлопа).

По этой причине поршневые двигатели не могли обеспечить дальнейшее развитие авиации вследствие неразрешимости противоречия между ограниченными возможностями по наращиванию мощности и требованиями к повышению скорости полета. В своем развитии поршневые двигатели подошли к пределу своих возможностей. Для дальнейшего совершенствования воздушных судов потребовался качественный скачок в области создания авиационных силовых установок.

Такой скачок произошел в конце 40-х годов прошлого века, когда в авиации получили практическое применение двигатели принципиально нового типа – газотурбинные двигатели (ГТД).

В первом поколении авиационных ГТД основным типом был турбореактивный двигатель (ТРД), который совместил в себе функции генератора мощности и движителя, отрицая воздушный винт как движитель, имеющий ограниченные скоростные возможности.

Рис.1. Принципиальная схема ТРД

Скорость истечения газа из реактивного сопла ТРД в несколько раз превышает скорость воздушных масс, отбрасываемых воздушным винтом. Его тяговый КПД непрерывно возрастает с увеличением скорости полета, поэтому ТРД как движитель более эффективен при высоких скоростях полета. Характерный для ТРД подвод тепла при постоянном давлении обеспечивает возможность использования в рабочем процессе непрерывного потока и открытых проходных сечений проточной части, что не препятствует повышению расхода воздуха до значений, в десятки раз превышающих достигнутые в наиболее мощных поршневых двигателях. Поскольку пропорционально расходу воздуха может быть увеличен и расход топлива, ТРД как тепловая машина имеет большие резервы для повышения мощности, причем это возможно при относительно небольшом увеличении веса конструкции. Удельный вес ТРД удалось снизить до 0,25-0,35 кг/кг тяги.

Тяговая мощность ТРД возрастает с увеличением скорости полета до сверхзвуковых значений, поэтому ТРД наиболее выгодны для применения при сверхзвуковых скоростях полета. Однако низкое аэродинамическое совершенство первых самолетов с ТРД не позволили освоить оптимальные для них сверхзвуковые скорости. Тем не менее, ТРД обеспечили существенный скачок скорости полета до околозвуковых величин (900-1000 км/ч).

В процессе развития ТРД проявились и труднопреодолимые недостатки этих двигателей, сильно ограничивающие их применение на самолетах гражданской авиации. ТРД имеет значительно худшую топливную экономичность по сравнению с поршневыми ДВС при малых скоростях полета и особенно на старте. Первые образцы ТРД имели на старте в 3-5 раз больший расход топлива при одинаковой тяге с поршневыми ДВС, что также определяется особенностями его рабочего процесса. Несмотря на относительно малый собственный вес, ТРД потребовали существенного утяжеления конструкции ВС из-за необходимости размещения большого запаса топлива на полет.

Таким образом, возникло противоречие между требованием к обеспечению большой дальности полета самолетов и ограниченной возможностью ТРД для реализации этого требования вследствие их низкой топливной экономичности. Работая над разрешением этого противоречия, конструкторами был создан принципиально новый тип ГТД второго поколения – турбовинтовые двигатели (ТВД).

Рис.2. Принципиальная схема ТВД

Как тепловая машина ТВД использует тот же рабочий процесс, что и ТРД, но не обладает функциями движителя, выполняя аналогично поршневому ДВС в основном роль генератора мощности для воздушного винта. На этом этапе произошел возврат к исходной схеме силовой установки «двигатель – воздушный винт», но на значительно более высоком уровне развития, так как ТВД не имеет таких жестких весовых ограничений по мощности, как поршневой двигатель.

ТВД обеспечил существенное (по сравнению с поршневыми ДВС) повышение скорости полета и грузоподъемности самолетов за счет избытка располагаемой мощности при малом весе конструкции и высокой топливной экономичности. Мощность ТВД удалось довести до 10000 кВт и выше при удельном весе 0,25-0,35 кг/кВт и удельном расходе топлива 0,3-0,4 кг/кВт.ч. При этом скорость полета самолетов с ТВД достигла 700-750 км/ч, дальность полета 10 000 км и более при грузоподъемности 30-40 т. Благодаря высокой топливной экономичности ТВД заняли в конце 50-х лидирующее положение в силовых установках пассажирских самолетов, обеспечив для них наименьший расход топлива на единицу транспортной работы. ТВД положили начало развитию гражданской авиации как рентабельного вида транспорта.

В процессе совершенствования ТВД вновь возникло противоречие между необходимостью повышения скорости полета и ограниченными возможностями воздушного винта, обусловленными резким снижением КПД винта вследствие роста потерь в скачках уплотнения на концах лопастей. Для разрешения этого противоречия на данном этапе развития были созданы ГТД качественно нового типа – двухконтурные турбореактивные двигатели (ДТРД), занимающие по принципу создания тяги промежуточное положение между ТРД и ТВД. Роль движителя в ДТРД частично стал выполнять вентилятор относительно небольшого диаметра, приближая ДТРД по скоростным возможностям к ТРД. Это позволило повысить скорость полета до 900-950 км/ч.

Рис.3. Принципиальная схема ДТРД

Благодаря своим положительным качествам, ДТРД превратились в 60-х годах в наиболее распространенный тип ГТД 3-го поколения. При их развитии были достигнуты наиболее важные результаты в области совершенствования газогенераторов, которые могли быть использованы для любого типа ГТД. Освоены конструкции двухкаскадных компрессоров, созданы компактные камеры сгорания, применены новые материалы, позволившие снизить вес газогенераторов, повысить их ресурс и безотказность.