Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii_MSPR_SFU16.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
6.15 Mб
Скачать

1.6 Классификация математических моделей структурированных систем

Рассмотрим теперь проблему моделирования структурированных систем. В настоящее время здесь установилась классификация моделей по характеру допущений о моделируемом объекте и по виду используемого математического аппарата. Эта классификация относится к широкому кругу систем, в том числе и к системам принятия решений.

Следуя классификации [31], рассмотрим следующие виды моделей систем.

Непрерывно-детерминированные модели (D-схемы). В этом виде моделей в качестве рабочего аппарата используются дифференциальные уравнения – либо обыкновенные, либо дифференциальные уравнения в частных производных. Процессы, происходящие в моделях данного типа, зависят от непрерывного (физического) времени. При этом все параметры уравнений предполагаются точно известными (детерминированными). Это же относится и к воздействиям, влияющим на систему – они также рассматриваются в виде детерминированных сигналов. Наибольшее распространение этот вид моделей получил в теоретической механике, механике сплошных сред, а также в классической теории автоматического управления.

Дискретно-детерминированные модели (F – схемы).В этом виде моделейвремя предполагается дискретным, т.е. все процессы, происходящие в системе, привязываются к последовательности временных шагов, или тактов. Функции состояния системы определяются на множестве моментов дискретного времени. Рабочим аппаратом таких моделей служат разностные уравнения, определяющие состояние системы в определенный момент времени на основе информации о состояниях в предыдущие моменты дискретного времени. Все параметры системы и все входные воздействия, как и в предыдущем случае, предполагаются детер-минированными. К этому классу моделей относят также важный класс схем, определяемых как конечные автоматы (F–автоматы). Конечный автомат при своей работе по определенному закону переходит из одного состояния в другое в зависимости от внешних воздействий и собственного состояния в данный и предыдущие моменты дискретного времени. Поведение таких систем изучает теория конечных автоматов. Наиболее широкая область применения теории конечных автоматов – моделиро-вание цифровых и других дискретных устройств. К данному виду моделей можно отнести также сети Петри которые будут рассмотрены ниже.

Дискретно-стохастические модели (P – схемы).В моделях данного вида, в отличие от предыдущих моделей , переход из одного состояния в другое происходит случайным образом. При этом уже невозможно говорить о том, в каком конкретно состоянии находится система, речь идет о распределении вероятностей пребывания в том или ином состоянии. К таким моделям относят вероятностные автоматы (P–автоматы). Вероятностный конечный автомат при своей работе с определенной вероятностью переходит из одного состояния в другое в зависимости от внешних воздействий и собственного состояния в данный и предыдущие моменты дискретного времени. Примером таких автоматов могут служить модели, построенные на формализме цепей Маркова, а также сети Петри с вероятностным поведением.

Непрерывно-стохастические модели (Q – схемы). Модели данного типа рассматриваются в непрерывном времени, но их поведение носит случайный характер. Наиболее известный класс таких моделей представляют собой системы массового обслуживания. Как правило, рассматриваются случайные потоки заявок, поступающие в систему, их обработка системой. Определяются, например, такие параметры, как время обслуживания заявок, длина очереди на обслуживание и другие, связанные с обслуживанием. В терминах систем массового обслуживания удается описывать многие технологические и экономические процессы, системы передачи данных, компьютерные сети.

Сетевые модели (N – схемы). Такие модели используются для описания сложных систем, состоящих из самостоятельно работающих и взаимодействующих подсистем. Наиболее известными моделями данного вида являются сети Петри различных модификаций. Кроме того, к сетевым моделям можно отнести различные структурные модели, используемые при разработке бизнес-систем такие как IDEFX и DFD-модели, структурные модели стандарта ARIS и ряд других.

Комбинированные модели (A – схемы) реализуют комбинированный подход к формальному описанию систем, включающий все ранее рассмотренные виды моделей. A – схема должна одновременно выполнять несколько функций: являться адекватным математическим описанием объекта моделирования, служить основанием для построения алгоритмов и программ при машинной реализации модели, производить численные расчеты и, желательно, аналитические исследования поведения моделируемой системы. Современные системы моделирования, как правило, реализуют комбинированный подход. Они позволяют в визуальном режиме описывать моделируемый объект в любой удобной для исследователя форме (непрерывной, дискретной, детерминированной, случайной, сетевой), а затем производить в интерактивном режиме сложные исследования его поведения, получая информацию в наглядной графической, табличной или текстовой форме. Примерами систем моделирования, реализующих комбинированный подход, являются MatLab, MVS, AnyLogic.

Ниже рассмотрен ряд примеров этих классов моделей применительно к системам принятия решений.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]